AmilgebOs
lheloe & Our

RN e R A A

e P e

[ty FEE WP

“ e i Pl e T o e 2

AmigaDOS

Inside and Out

Kerkloh
Tornsdorf
Zoller

=] 1> Type SYS:
t|{ FailAt 40

ki echo "Professi
] echo "Version
{ IF EXISTS sys:
3 Path add Sy
%] EndIf
] IF EXISTS sys:
3 Path add Ut

V' EndIf
] IF EXISTS sys:

A Data Becker book
Published by

Abacusliii

T e et e o

9.3 TaASKPTT c.evuiereeeeereeseieserenersrensercassasmssensrsnesnsensssnssassases 228
9.4 TaSKSLOD veuniiiennerreneeennernsecranseeseissmnsreanessesassssssnsssves 232
9.5 DIlay..ccciveiieersiirerenisiriiciisirnesseeriniiiniensistieeiessaeaan 234
10. QuUICK ReferenCe...ceuvvuereniirieiricencreteernecrraneensiiersssosssness 247
10.1 THEED cuveciiietreiiiieninitnennrenresenstnsrassncsanssssesnsensansenses 248
10.2 1 1 1O 2 R 250
10.3 The CLIShell Commandsvvveeverevirernennseeenneererenesnnes 253
APPENAiX..iviiiiiiiieiiiniieiiiiiereae e s 267

Note:

Preface

The Amiga Workbench, a user-friendly mouse controlled graphic
operating system, makes it easy for the beginner to enter the world of
computers. The windows and icons which appear on the screen after you
start the computer are much more attractive to a new user than a plain
cursor waiting for simple keyboard input.

Sooner or later, either by mistake or out of curiosity, you click the
CLI icon on the Workbench disk. A NewCLI window appears and the
boring cursor of the Command Line Interface makes its appearance.
This user interface, although it doesn’t use the mouse, is more powerful
than the Amiga Workbench. In fact, the Workbench is loaded from the
CLI when the Amiga is turned on. For better or for worse, you now
have to work with the CLI (Command Line Interface).

You actually can’t get by without using the CLT if you wish to do any
meaningful work with the Amiga. The Workbench is a simple graphic
interface that makes it easy for the average user to access the Amiga.
You can only do so much with the Workbench, while the CLI’s
capabilities are almost unlimited.

This book will be very helpful to you if you keep it by your side as
you work with the CLI. After a simple but necessary introduction,
you'll find a lot of information about the CLI. You’ll learn solutions
to common problems, detailed descriptions of all CLI commands,
programming from script files, multitasking, and even an explanation
of the internal workings of AmigaDOS and the CLI. The last few
pages contain a Quick Reference of all the commands.

One final comment: The Amiga is an ever expanding system and the
Workbench is constantly being improved. This book covers both
Workbench 1.2 and 1.3. These new system disks work so much better
than the older versions that we had to make you aware of the additions.
Chapter 4 covers Version 1.3 in detail, and any differences between the
two Workbench versions are pointed out as they appear in this book.
This book supports Workbench/Kickstart 1.2 and Workbench/Kickstart
1.3.

The Authors Minster, June 1988

1.

Introduction

ABAcCuUs

1. INTRODUCTION

1.

Note for
Workbench
1.3 users:

Introduction

The first steps in any area of computing usually seem the hardest. For
this reason, we have kept the theories in this chapter to a minimum.
The following sections are intended to make your first experiences with
the CLT as easy as possible. In fact, the only CLI commands that
appear in the following sections of Chapter 1 are the necessary ones.
For those who wish to experiment further, Chapter 6 contains more
background information on the CLI.

For now, however, we recommend that you read this book in sequence
and work through the examples as they appear. Whether you’ve just
unpacked your Amiga or are an old hand at the computer, starting from
the beginning is always the best way to learn anything. Good luck!

Workbench 1.3 has two AmigaDOS access programs: The CLI
(contained in the System drawer) and the She 11, which is in the
Workbench 1.3 window. Please use the CLI for most of your work
with this book. The Shell is an upgraded version of the CLTI, which
is explained in Chapter 4. Once you have become familiar with the
CLI, you will probably use the Shell exclusively, but please use the
CLI for the examples in this book.

" S

1. INTRODUCTION

AMIGADOS INsIDE AND OuT

What is
DOS?

The Task of DOS

Before we begin working with the CL.I, we must first explain briefly
the function of DOS. DOS is the abbreviation for Disk Operating
System. You may already know the definition of an operating system:
The program(s) that control the computer (tell it what to do). Don't
confuse an operating system with an application program (e.g., word
processors, spreadsheets, etc.). An operating system only provides the
computer with basic instructions from which a programmer can con-
struct his programs. It takes over such tasks as memory management,
hardware (keyboard, disk drive, printer, etc.) control and coordinating
various functions. It also makes established program functions avail-
able. A system programmer, for instance, shouldn’t worry about which
areas of memory in the computer are occupied and which areas are still
available. The operating system automatically allocates free memory of
the desired size, if enough memory is available.

In AmigaDOS the disk commands that the computer can execute aren’t
integrated into the operating system itself. On some home computers,
you can enter certain commands which the operating system recognizes
and immediately executes (such as Load, Save, etc.). AmigaDOS is
based on a different principle: the DOS commands are short programs
that need to be loaded from a disk drive (floppy disk, hard disk or RAM
disk) before they can execute. Upon execution, DOS returns to the
routines contained in the operating system. This method has certain
advantages over an operating system with integrated commands:

. Each command occupies memory only when it executes. After
execution, it is removed from memory. Version 1.3 allows often
used commands to remain resident in memory.

. If the authors find that a command contains some kind of bug or
error, it can later be fixed with a corrected version.

. An unlimited range of commands exists. New commands can be
added to DOS as needed.

The biggest disadvantage of a separate DOS is disk switching; exchang-
ing disks takes time. This frequently occurs on smaller computers with
a limited amount of memory space and a single disk drive. By using a
hard disk or multiple floppy disk drives in conjunction with a RAM
disk, this disadvantage can be avoided.

ABACUS

1.2 THE WORKBENCH AND THE CLI

1.2

Command
Line
Interface

The Workbench and the CLI

The previous section gave a rough description of what DOS does. DOS
contains the tools with which the user can preform functions required
for the operation of the computer. For example, how do you tell the
computer that you want to format a disk? The Workbench can do this:
There is a menu item in the Disk menu named Initialize. You
insert the blank disk, click once on its icon and select the
Initialize item from the Disk menu. This loads the
corresponding command from the Workbench disk and any other
commands as needed. The Workbench is actually nothing more than a
program loaded from the disk when the computer boots up, creating the
graphic user interface.

An alternative to the Workbench is the CLI (Command Line Interface).
The name says it all: Commands entered from the keyboard form the
command line interface, instead of icons or pointer. The mouse can
only be used to change the size of any window opened for a CLI task.

Isn’t the CLT a step backward in computer technology, then? It may
seem that way at first glance, since the Workbench simplifies startup
procedures on the Amiga. However, some aspects of the Amiga’s
operating system, and even the Workbench itself, cannot be accessed
without the CLI. The startup sequence, a file made of commands
instructing the Amiga what to do or load as it starts up, can only be
edited from the CLI. This startup sequence is located on the Workbench
disk, and the Amiga looks for this file every time you turn the Amiga
on,

In addition, some of the filenames on a disk are not visible on the
Workbench for a number of reasons (e.g., an invisible file may have no
matching info file). As a result, the CLI provides the only possible
way to really look behind the scenes in Amiga disks.

s

1. INTRODUCTION

AMIGADOS INsiDE AND OUT

1.3

Backup
copies

Amiga 1000
users only:

Amiga 500
and 2000
users only:

Preparations

Before you begin working with the CLI, make a copy of your original
Workbench disk. Use this backup as your Workbench disk. As time
passes, the backup disk may become corrupt (unreadable), or important
files may be erased accidentally. If this happens, you can make another
backup from the original Workbench disk.

It’s easy to make a backup copy of the Workbench disk. If you have
never backed up a disk before, do the following:

Take the original Workbench disk. Lock for the write protect (that
sliding piece of plastic set into one corner of the disk. Move the
write protect to the write protect position (you should be able to
see through the disk in a hole created by the write protect). You
cannot overwrite the Workbench disk when the write protect is in
this position.

Place the Kickstart disk in the internal disk drive, sometimes called
drive df0: (drive floppy 0). Turn on your Amiga and wait until the
hand icon holding the Workbench disk icon appears. Remove the
Kickstart disk and insert the original Workbench disk in the
internal disk drive (df0:). Skip the next step {for Amiga 500 and
Amiga 2000 users) and continue with the following step.

Place the original Workbench disk in the internal disk drive,
sometimes called drive df0: (drive floppy 0). Turn on your Amiga.
The loading process begins immediately.

After a while the Workbench screen appears. The loaded Workbench
disk is represented by an icon in the upper right corner of the
screen. Move the mouse pointer onto this icon. Click on this icon
by pressing and releasing the left mouse button. Press and hold the
right mouse button. Move the mouse pointer to the Workbench
menu title and select the Duplicate item from this menu.
Release the right mouse button.

Now the Amiga asks you to insert the disk which you would like
copied (the FROM disk). You already have that disk in the drive,
so click on the Cont inue gadget.

Have a blank, unformatted disk ready to become your backup
Workbench disk. This is the disk that the Duplicate function
refers to as the TO disk. Check the write protect of the TO disk;
you should not be able to see through the comer of the disk, like
you could with the original Workbench disk.

ABacus

1.3 PREPARATIONS

During the copying process, the Amiga will ask that you exchange
the FROM (source) and TO (destination) disks several times.
Never remove a disk from a disk drive when the red
hght is on (you could lose data, and even destroy the disk)!!! A
window in the upper left corner of the Workbench screen tells you
when the process is done.

The difference between the original and the backup disk is that the
backup appends the words “Copy of” in front of the original name.
Therefore, if the original Workbench disk is named Workbench
1.3, the new disk has the name Copy of Workbench 1.3.
Remove this extension using the Rename item from the
Workbench menu (use the and <Backspace> keys to delete
the “Copy of” text and press the <Return> key). DOS always
distinguishes between the two disks by the date and time of
creation assigned to each disk. These details are always stored
topically on the backup.

Take the original Workbench disk and put it in a safe place.
Anywhere far away from moisture and magnetic objects will work
(a linen closet, an unused desk drawer, etc.). Use the backup you
have made as your Workbench disk.

e e

1. INTRODUCTION

AMIGADOS INSIDE AND OuUT

Workbench
1.2 users
only

Workbench
12 and 1.3
users

Introduction to the CLI

Remove all disks from any disk drives you have connected to the
Amiga. Press and hold the <Ctrl> key, the <Commodore> (sometimes
called the left <Amiga> key) and the right <Amiga> key to reset the
Amiga. Wait until the icon of a hand holding a Workbench disk appears
on the screen. Insert your backup copy of the Workbench disk. The
system boots and the Workbench screen appears.

Workbench 1.2 users will have to make sure that they can access the
CLI. Double-click on the disk icon. The Workbench window opens.
Look for the Preferences icon (the icon of an Amiga 1000 case
with a question mark superimposed over it). Double-click the
Preferences icon. The Preferences window appears.

Look for the text marked CLI. There are two gadgets next to the CLI
text: The On gadget and the O£ £ gadget. Click on the On gadget if it is
not already clicked on (it will be a different color from the Of £ gadget
if it’s on; the Of £ gadget will be a different color if the CLI is off).
This will allow you to access the CLI from the Workbench. Click on
the Save gadget in the Preferences window. The Workbench
window reappears.

Double-click on the System drawer icon in the Workbench window.
The System window opens. Look for the CLI icon. Double-click on
this icon.

The CLI loads, and a window named NewCLI appears on the screen.

The NewCLI window has some of the attributes of a normal window
on an Amiga. It has a drag bar (which allows you to move it around the
screen); a sizing gadget (which allows you to change the window’s
size); a front gadget and a back gadget (for moving the window into the
foreground or background of the screen). However, the NewCLI
window has no close gadget: You must use a CLI command to close
the window (more on this in Section 1.8).

The only thing displayed in the NewCLI window is the DOS prompt.
This consists of a number 1 and a greater-than character (1>). This
character tells the user that the computer is ready to receive and execute
commands from the keyboard. A cursor waits beside the prompt for
your input.

ABACUS

1.5 THE FIrsT CoMMiND

1.5

<Backspace>
and <Return>
keys

The First Command

All inputs in the CLI must be entered by pressing the <Enters or
<Return> key (some Amigas have <.!> embossed on this key). Snce

both keys perform the identical function, we refer to the <Return>tey
for the duration of this book.

If you press the <Return> key without entering a command, the pronpt
appears one line down from its previous location. Unfortunately, rou
cannot use the four cursor keys to move the cursor to a particilar
position within the window. All commands must be completely typed
out every time they are used. In the input line itself, single characers
that have been input can be erased from right to left using the
<Backspace> key (some Amigas have <« > embossed on this ley)
above the <Return> key. An entire line can be erased by holding dwn
the <Ctrl> key and pressing the <X> key (this is called “presing
<Ctrl><X>,” and will be used throughout this book to describe key
combinations involving the <Ctrl> key).

Only available commands can be executed. Enter the following;
files

Remember to press the <Return> key at the end of the line, The (LI
responds with:

Unknown command files

Only commands available as programs in the disk drive can be execued.
This is the special feature of AmigaDOS. The CLI receivesthe
command (program name) from the user, searches the disk drive fir a
file by that name, loads the file into memory and executes it. This
means that the CLI can execute programs as well as DOS command.

Move the mouse pointer to the top of the NewCLI window. Pressand
hold the left mouse button and drag the window to the top left ofthe
screen. Release the left mouse button. Move the pointer to the siing
gadget at the lower right comner of the NewCLI window. Press and lold
the left mouse button and drag the sizing gadget to the bottom right of
the screen. Release the left mouse button.

i;hm-.

1. INTRODUCTION

Dir

10

AMIGADOS INSIDE AND OUT

We’ll begin with a relatively simple but very important command, and
list other commands as you gain experience in the CLI. The name of
this first command is dir (directory). Dir displays a list of the files
contained in the specified disk drive (floppy disk, hard disk or RAM
disk). Enter the following (remember to press the <Return> key when
you're done entering the command):

dir
It doesn’t matter whether you enter uppercase or lowercase characters in

the CLI. CLI commands even accept mixed case letters.

After a while, the CLI displays the contents of the internal disk drive
(drive df0:). This list is the directory of the Workbench disk.

The names don’t appear on the screen very quickly at first. Soon the
names start flying by on the screen. Press any key to stop the display,
and press the <Backspace> key to resume the display.

The display should be similar to the following. Your display may
differ—don’t worry if it does; remember the Amiga is an ever expanding
system and new features are continually being added.

1>dir
Trashcan (dir)
C (dir)
Prefs (dir)
System (dir)
1l (dir)
devs (dir)
s (dir)
t (dir)
fonts (dir)
libs (dir)
Empty (dir)
Utilities (dir)
Expansion (dir)
.info Disk.info

Empty.info Expansion.info

Prefs.info Shell

Shell.info System.info

Trashcan.info Utilities.info
1>

ABACUS

1.6 DIRECTORY STRUCTURE

1.6

Data files

Subdirec-
tories

Directory Structure

You may recognize some of the filenames displayed by the Dir
command; while others may be unfamiliar to you. You’ll notice that
most of the filenames in the Workbench appear in two forms: Once
under their usual names (e.g., Preferences for 1.2, Shell for
1.3); and again with an added extension of .info (eg.,
Preferences.info for 1.2, Shell.info for 1.3). Info files
contain icon data, date and time information and comments. You cannot
see some files from the Workbench screen because these files don’t have
matching .info files. However, you don’t need .info files when you
work in the CLI. The Preferences program, for example, is
capable of executing without an .info file.

Some other file entries, shown from the Workbench as drawer icons,
have extensions of (dir) when you view them using the Dir
command. The directory (or drawer) structure by which AmigaDOS
handles the data files is the same for both the Workbench and the CLI.
You can’t see all the data files in the CLI at once, either. The Dir
command only displays the root {(main) directory of a disk for now.

This form of data file management is often referred to as a tree structure.
The main directory serves as the trunk, and the subdirectories extend
from this trunk like the branches of a tree. Each subdirectory can either
contain data files or another subdirectory. There is almost no limit to
the number of subdirectories you can have.

How do you reach other subdirectories? From the Workbench it’s no
problem: a subdirectory appears as soon as you double-click on a
drawer. If more drawers appear in this new subdirectory window, you
can access their contents in the same way.

If you want to look at the contents of a particular subdirectory from the
CLI, you must append a path to the Dir command. This path
describes the “access route” through directories and subdirectories to get
to a particular file or directory. The simplest path is to simply provide a
directory name. Enter the following (press the <Return> key at the end
of the input):

dir system

The Dir System command displays the directory of the System
drawer on the Workbench disk.

The names shown are actual data files—no (dir) extensions appear.

Since there are no more (dir) names, we can go no deeper in this
branch of the tree. We can only access files in this directory.

11

1. INTRODUCTION

AMIGADOS INSIDE AND OUT

Let’s look at a directory (drawer) that we normally can’t see from the
Workbench. The Devs directory has no added .info file, which is why
you can’t see it in the Workbench window. However, we can view
the contents of this directory from the CLI. Enter the following
command:

dirdevs

This command displays the following directories and files (Workbench
1.3 will also contain a ramdrive .device.):

1>dir devs
keymaps (dir)
printers (dir)
clipboards (dir)

clipboard.device MountList
narrator.device parallel.device
printer.device serial.device
system-configquration

>

You'll immediately see that there are three more directories contained
within this directory. You can easily view one of these directories by
adding a slash (/) character and the name of the desired directory. You are
still in the main directory; so enter the following to read the
printers directory inside the devs directory:

dirdevs/printers

Don’t confuse the slash character (/) with the backslash character (\).
The result of this command locks something like this for Workbench
1.2 users (1.3 users will find these printers on the Extras disk; they
should enter: dir "Extras 1.3:devs/printers™)

1>dir devs/printers
Alphacom Alphapro_101 Brother HR-15XL
CBM_MPS1000 Diablo_630
Diablo Advantage D25 Diablo C~150
Epson Epson_JX-80
generic HP_ LaserJet
HP LaserJet_ PLUS ImagewriterIl
Okidata 292 Ckidata_92
Okimate_20 Qume_LetterPro_20
>

The underscore character () shown above is located on the keyboard by
pressing <Shift><->,

ABACUS

Drive specifier

1.6 DIRECTORY STRUCTURE

The Preferences program retrieves the data needed to drive different
types of printers from this directory. No further subdirectories are
available from this directory. This directory is one of the deepest
subdirectories on the Workbench disk.

A complete path usually contains the name of the disk or the disk drive
specifier. When you begin, AmigaDOS defaults to df0: (the internal
disk drive). This part of the path is optional. If you have two or more
disk drives, you can access them with the Dir command as well using
the drive specifier. The disk drive specifier must begin the path
statement. In the simplest case (no path statement), Dir df1:, for
example, displays the main directory of a disk in the first external disk
drive. Hard disk users call their device dh0:. Statements referring to
subdirectories always follow the colon:

Dir dh0:Text/Letters/Bills

Unfortunately, if you have only one disk drive connected to your
Amiga, you can’t just load any disk you want and look at the directory.
If you remove the Workbench disk, insert another disk and enteraDir
command, the CLI requests that you insert the Workbench disk. We’lt
explain this problem in more detail in Chapter 3. All you need is a
single disk drive for this chapter to try out the functions.

The system directory you viewed earlier showed some commands that
are included with CLI commands, but aren’t necessarily CLI
commands themselves. The actual CLI commands are in a different
directory.

You can view the CL.I commands by looking in directory ¢ (dir) of
the Workbench disk. Enter the following command to view the Amiga-
DOS commands available to you:

dirc

13

1. INTRODUCTION

AMIGADOS INSIDE AND OuT

1.7

/A (Argument)

14

Argument Templates

Every CLI command has a built-in help function called an argument
template. Because these command are so powerful even an experienced
CLI user can forget the syntax of a command. If the syntax is incorrect,
the CLI responds with one of these messages:

Bad args (or) Bad arguments

You could refer to Chapter 10 of this book to find the correct syntax,
but it’s often much faster to call the argument template for the
command.

Enter the CLT command, followed by a space and a question mark, then
press the <Return> key. AmigaDOS displays the argument template for
the desired command. Enter the following:

dir 2
The CLI displays:
DIR,QOPT/K:

The argument template is easy to read once you leamn the coding. Dir
is the keyword (command)—this must appear first in the syntax,

A comma separates arguments from each other in the argument
template. These shouldn’t be entered when you type the command
itself. Therefore, Dir has two arguments avajlable: Dir and OPT/K.
Arguments can also contain qualifiers (control characters) preceded by a
slash (/) character. The second argument of the Dir command includes
the word OPT. OPT is an abbreviation for OPTIONAL. This means
that OPT is a form of input which can be included or omitted.

The final section of the second argument is /K. The letter K is an
abbreviation for KEY. This signals the CLI to wait for keyboard input.

The colon (:) at the end of the argument template is important, but it’s
not part of the argument template (more on this at the end of this
section).

Three possible qualifiers can appear in an argument template:

This qualifier requires a certain argument. If you omit the argument, the
command cannot execute.

ABAcCuUS

/K (Key)

/8 (Switch)

1.7 ARGUMENT TEMPLATES

The qualifier’s name must appear as input (e.g., OPT in the Dir
example above), and a certain parameter must appear as well. The
parameters allowed and the functions executed depend on the respective
CLI command (see Chapter Two for more details).

This qualifier needs no arguments. It acts as a switch (toggle) for a
command. Switches in commands do just what a wall switch does—
turn a command on or off, or switch the command to another mode.

If none of the three qualifiers appear in an argument, then the parameter
accompanying the command (if any) can be identified from its position
within the command line. For example, the command below has no
qualifiers. It tells AmigaDOS to display directory ¢ of drive df0: on
the screen:

dir df0:c

It’s possible that an argument can be unnamed. The Delete command
(which we’ll discuss in detail later) has a number of different arguments.
Enter the following in the CLI:

delete ?
The CLI responds with:
verevererrBALL/S,Q=QUIET/S:

The ten commas at the beginning of the argument template .imply that
you can delete up to ten files at a time. However, no input is required
when no qualifiers are surrounded by commas.

The ALL/S argument means that if you precede the word ALL with the
name of a directory, the command deletes all the files on the directory
and the directory itself. The following input deletes all files from the
directory in drive df0: named NORTON, then the NORTON directory
itself:

DELETE 4f0:NORTON ALL

If you entered this command and had a set of files inside a directory
named NORTON in df0:, AmigaDOS would report the status of the
deleted files on the screen. The Q=QUIET/S argument switches display
of the file deletion process on. The equal sign between the Q and the
QUIET means that you can use either the word or the letter as the
argument. The following command deletes all the files from the
NORTON directory in drive df0:, then deletes the NORTON directory.
This command and the above Delete command perform the same

* function. However, the command below suppresses the list of deleted

files on the screen:

DELETE df0: NORTON ALL QUIET

1§

1. INTRODUCTION

Arguments

16

AMIGADOS INSIDE AND OUT

This version of the Delete command does the same thing (notice the
use of the letter Q instead of the word QUIET):

DELETE df0: NORTON ALL Q

An argument introduced by the user through its name can be placed
anywhere within the input line. For instance, the Copy command
includes the arguments From and To/A, among others. Both of the
following command sequences perform the same function—copying the
letters file from drive df0: to a file on drive df1: named text:

copy FROM df0:letters TO dfl:text
copy TO dfl:text FROM df0:letters

It doesn’t matter whether the command names and arguments are entered
in uppercase or lowercase letters.

After command parameters are displayed in an argument template, the
cursor reappears in the same line as the argument template following
the colon. You can now enter an argument or set of arguments without
re-entering the command keyword.

When working in the CLT, if you’re not 100% sure which command
uses which arguments, enter the command, a space and a question mark
to see the argument template.

ABAcCuUs

1.8 QurrtinGg THE CLI

1.8

EndCLI

Quitting the CLI

We mentioned in Section 1.4 that CLI windows have no close gadget.
The CLI uses a command instead of a close gadget to exit and return
you to the Workbench.

The EndCLT command closes the CLT window currently active.

Enter the following (again, remember to press the <Return> key at the
end of the input):

endcli

The CLT window immediately disappears and the Amiga returns you to
the Workbench.

This introduction to working with the CLI has made you familiar with

its basic operation. The following chapters systematically explain all
the currently available commands.

17

2.
The CLI
Commands

ABACUS

2. THE CLI COMMANDS

2.

Note:

The CLI Commands

This chapter lists each CLT command in detail. The commands appear
in order of difficulty and importance and not in alphabetical order. The
easier to learn commands appear first, this way you won’t immediately
confront the relatively difficult commands, which can confuse you if
you don’t have the background information needed for these commands.
Section 10 lists the commands in alphabetical order.

Section 2.1 describes all the commands that fall under the general
heading of disk drive and file management. Here you’ll find the
commands which access the floppy or hard disk drives, and files stored
on these disk drives.

Section 2.2 describes the commands which access the operating system
in some way or another. A typical member of this group is the Date
command which deals with the system date.

Section 2.3 describes commands used in script files. These are similar
to batch files on MS-DOS computers. Script files perform multiple
commands, saving the user the effort of repeatedly typing in the same
command sequences. The startup-sequence is a script file. Script files
are one of the most powerful features of AmigaDOS.

Finally, Section 2.4 explains two comprehensive commands. These
commands, ED and Edit, invoke two different text editors which are
used to create script files.

The following sections contain a great deal of descriptive material. We
recommend that you try out commands on the CLI (when you can) as
much as possible while you read. This will help you understand the
functions of the commands. Use a backup copy of the Workbench disk,
do not use the original disk. If you don’t have a backup, go to Chapter
1 and make one. You may also want to keep a blank, unformatted disk
around for testing some commands.

Workbench 1.3 contains a number of added arguments and commands,
making it much more versatile than Workbench 1.2. Any differences in
Workbench 1.3 will appear after the general description of the
command, preceded by the text Workbench 1.3 implementation:
in bold type.

21

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

Disk and File Management

This section lists the commands used for handling files and managing
the Amiga disk drives.

2.1.1

Syntax:

NOICONS

Format

Format DRIVE <disk> NAME <name> [NOICONS]

A disk must be formatted or initialized before you can use it on an
Amiga. Formatting prepares a disk so that the Amiga can rea_d data from
and write data to the disk. The Workbench menu contains an item
named Initialize. DOS recognizes unformatted disks immediately
and places a BAD name under the disk icon on the Workbench screen.

The CLI Format command requires more information than the
Workbench’s Initialize item. You must give arguments specify-
ing the disk drive and the additional details about the new disk’s name.
To format a disk in disk drive df0, you must input:

format DRIVE df(0: NAME Example NOICONS

The NAME argument can be up to 30 characters long. Names that long
can cover up other disk names while in the Workbench, so we recom-
mend that you use shorter disk names. If you include blank spaces in
the NAME argument, the argument must be enclosed in quotation
marks. Incidentally, that applies to all work with the CLI: arguments
which cannot contain spaces, or the argument must be enclosed within
quotation marks. For example:

format DRIVE df0: NAME "My Text™ NOICONS

The NOICONS argument suppresses the creation of the Trashcan
icon which normally appears in any disk window on the Workbench.
This Trashcan is completely unnecessary when using the CLI.

The DRIVE and NAME arguments must be input every time you use the
Format command. If the syntax was entered correctly, the CLI loads
the Format command and the window displays:

Insert disk to be initialized in drive DF0: and press Return

22

ABACUS

2.1 DisK AND FILE MANAGEMENT

Now that the Format command has been completely loaded, those
who have only a single disk drive can now remove the Workbench disk,
and insert the disk to be formatted. Before you press the <Return> key,
however, you should know that any data previously stored on this disk
is destroyed when you format the disk. If you wish to cancel the
procedure, press <Cirl><C> (hold down the <Curl> key and press the
<c> key) and press the <Return> key. The CLI then responds with a
**x* Break.

If you wish to continue, press the <Return> key alone. The Amiga
formats the disk in the drive. The CLI displays which cylinder (track
set) is currently being formatted. Each cylinder consists of two
concentric tracks on the disk, about 0.5 mm wide on opposing sides
(surfaces) of the disk. Each track can then be broken down into 11
sectors, each of which can hold in 512 bytes of data. Since the disk
possesses 80 cylinders (or 160 tracks) altogether, the entire disk
capacity amounts to 880K:

(80 * 2 * 11 * 512) /1024 Byte = 880K
You don’t need to format a disk if you plan to use the Diskcopy

command. The Diskcopy command automatically formats the disk if
it has not been formatted.

Workbench 1.3 implementation:

Syntax:

Root block

Boot blocks

FFS and
NOFFS

format DRIVE <disk> NAME <name> [NOICONS] [QUICK] [FFS]
[NOFFS]

The QUICK, FFS and NOFFS arguments are new additions to Version
1.3. The QUICK argument speeds up the formatting operation so that it
only takes a few seconds on a pre-formatted disk (a disk that has been
formatted once before). Only the tracks that contain the Root block and
the Boot blocks are formatted. A standard disk format (without the
QUICK argument) takes about two minutes.

The Root block (found on cylinder 40, side 0, sector 880) is the block
containing the root of the directory structure. The QUICK option
writes an empty directory to the disk. This file must not be erased.

Formatting of the Boot blocks (cylinder 0, side 0, sectors 0 and 1)
renews the boot program so the Amiga can eventually autostart. This
also eliminates any viruses that may have gotten into the boot blocks.

The FFS and NOFFS arguments are interconnected. They create the
desired file system for single partitions when formatting a hard disk.
Adding the FFS argument puts the new and faster FastFileSystem
into use. The slower FileSystemis used if NOFFS is entered.

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

A partition must be entered in the MountList if you want the Amiga
to run under the new FastFileSystem. This MountList is found
in the Devs drawer on the Workbench disk. It can be loaded and modi-
fied with ED (ed devs: mount 1ist—see ED for more information).
Each partition of the hard drive not autoconfigured (i.e., doesn’t already
exist elsewhere) has an entry here. Before the new FFS partitions can be
used, the following lines must be added to each partition entry:

FileSystem = l.FastFileSystem
GlobVec = -1

DosType = 0x4444F5301
StackSize = 4000

A requester displays the message Not a DOS Disk.. if such a partition
is placed inside the startup sequence the first time. It can be removed by
clicking on the Cancel gadget. The partitions must be re-formatted
under the new File system.

In case the FastFileSystem is attached to a partition, all you have
to do is re-format the partition. The entire hard disk must be re-
formatted if you wish to change the size of the partition (LowCyl to
HighCy1l). In any case, save the contents of the formatted partitions to
floppy disks before performing this format.

2.1.2

Syntax:

Dir

dir DIR,OPT/K

This command displays the files and directories on a disk, lists subdirec-
tories and the files within these subdirectories.

You read about this command in Chapter 1 and used it to view Amiga-
DOS’ file structure. In reality, this command does much more. The
argument template of Dir looks like this:

dir DIR,OPT/K

The DIR argument represents the exact path of the desired directory.
This argument initially defaults to the root directory of the Amiga’s
drive df0: (the internal disk drive). Therefore, if you want to read the
directory on another device, you must supply the drive specifier as the
DIR argument (e.g., df1:, ram:, dh0:, jh0:). The colon (:) at the end
of each drive specifier tells DOS that the name is in fact a device name.
The DIR argument may be followed by any path to a particular direc-
tory (drawer.)

ABACUS

Example:

2.1 DisK AND FILE MANAGEMENT

You want to view the Letters directory. The Text directory in the
disk in drive df1: contains the Letters directory. The following
sequence accesses that directory:

dir dfl:Text/Letters

Further subdirectories can be accessed at any time simply by adding
another slash character and directory name to the DIR argument.

If you omit arguments and qualifiers, the Dir command displays the
current directory. The use of the CD command (change directory) dictates
the current directory (see Section 2.1.3).

The capabilities of the Dir command expand with the use of the OPT
argument. Four qualifiers can be used with OPT: a, d, i and ai.

The a (All) qualifier displays all of the files and directory in the current
disk. You can view every directory and every file: AmigaDOS lists each
directory then the directory’s contents in indented format. This option is
very helpful if you cannot find a certain file. However, this option also
creates a stream of data which quickly fills, then scrolls the screen.
Pressing any key stops the scrolling; pressing the <Backspace> key
continues the directory display. The following command displays all the
files on the disk in drive df1: (the second disk drive):

dir dfl: opt a

The & (Directories) qualifier lists only the directories of the current disk.
This is useful for quick searches for a specific directory, without listing
the root directory files in addition to the directories.

The i (Interactive) option runs the Dir command in interactive mode.
This mode allows the user complete control of the directory output.
When Dir is invoked in interactive mode, AmigaDOS prompts with a
question mark after it displays each file. The user has the following
options for controlling the display:

<Return> Continues interactive output (displays the next file/dir-
ectory) name.

Del<Return> Typing this word and pressing the <Return> key deletes
the file currently displayed on the screen. Notice that
you enter the letters D E L, not press the key
(see Delete). You can only delete empty directones
(i.e., the directory you want to delete contains no files
or subdirectories). If you try to delete an occupied
directory using this command, AmigaDOS responds
with the error message Error code 216 then
displays the error.

<E><Return> Enters a deeper directory level. The directory output
resumes upon entry to this directory.

25

2. THE CLI COMMANDS

AI

AMIGADOS INSIDE AND OUT

<Return> Moves back up to a higher directory level (closer to the
main directory). If you try to move to a level higher
than the main directory, the Dir command ends.

<T><Return> Types (displays) a plain ASCII text file in the CLI
window. If you use the <T> key to display programs or
CLI commands, you'll only get garbage on the screen.
Pressing <Ctrl><C> stops the output and returns you
to interactive mode. If the output still isn’t back to
normal, press <Ctrl><O> to restore the Amiga’s
normal character set.

<?><Return> Displays the argument template of commands available
in interactive mode. The template for directories appears
on the screen as follows:

B=BACK/S, DEL=DELETE/S,E=ENTER/S, Q=QUIT/S:
<Q><Return> Quits interactive mode and returns you to the CLI
prompt.

If you enter an incorrect command in interactive mode, the CLI
responds with the message Invalid response~tryagain?:
after which you can re-enter the command.

The ai (All Interactive) qualifier displays all directory entries interac-
tively.

Workbench 1.3 implementation:

Syntax:

ALL

DIRS

26

dir DIR,OPT/K,ALL/S,DIRS/S, INTER/S

This new implementation of the Dir command adds the three argu-
ments ALL, INTER and DIRS which perform the same functions as
the a, i, d and ai argumensts. The OPT argument must be left off
when using these new arguments.

Displays all directory entries in the current disk.

Displays the names of the directories only in the current disk. This
argument displays the following output of the Workbench 1.3 disk:

1> dir dirs
Trashcan (dir)
¢ (dir)
Prefs
System (dir)
1 (din)
devs (dir)
s (dir)
t (dir)
fonts (dir)
libs (dir)
Empty (dir)
Utilities (dir)
1> -

ABAcCUS

INTER

2.1 Disk aAND FILE MANAGEMEIT

Displays the current disk directory in interactive mode (identical toi
qualifier). The INTER argument adds a new command to the commad
list:

Com<Return> Allows the user to execute a CLT command either dirext
or through the Run command. This function can ‘e
useful when you are in the directory of a data file yu
want printed. For example, you're in the s directory ard
you want to print out the startup-sequence fik.
Enter <c> or Com and press the <Return> key. Intera-
tive mode requests the command. Enter the following b
print out the startup sequence and continue in interactie
mode:

Command ?2:run type df0:s/startup-sequence to prt:

2.1.3

Syntax:

Examples:

cD

cd DIR

The D (Change Directory) command allows you to move to directories
either above or below the current directory. Let’s review the idea ofa
tree structure used in disks. CD lets you move from your curreit
directory’s location to another branch. Once you use the CD comman,
the directory to which you move becomes the current directory.

The following command (CD without arguments) displays the currett
directory:

cd

If you invoke the CLT immediately after startup, this response is the
disk drive specifier (e.g., DF0:).

The following command makes the System directory the current
directory (if the Sy stem directory is immediately accessible):

cd System

Entering another CD without arguments displays the new current
directory (e.g., Workbench:System).

All CLT commands now refer to the current directory. For example, i

you enter Dir the CLI displays the System directory instead of the
main directory.

21

2. THE CLI COMMANDS

The main
directory

/

Note:

Note:

28

AMIGADOS INSIDE AND OUT

There are two ways to display the System directory from the main
directory. The first method displays the System directory’s contents
and returns you to the main directory:

dir df0:system

The second method changes the current directory to the System
directory and displays the directory’s contents:

cd df0:system
dir

The second method doesn’t automatically return you to the main
directory. You must use one of CD’s single-character arguments to
move up toward the main directory.

This character moves you one directory up in the hierarchy of direc-
tories. Multiple slash characters move you up as many directories as
there are slashes. The following command moves you one directory up
{notice the space between the CD command and the /):

cd /

The following sequence moves you up two directory levels toward the
main directory (notice the space between the CD and the first / but no
space between the two slashes):

cd //

If you enter more slash characters than there are directory levels, the
CLI responds with the message Can’t £ind and the number of
slashes you entered.

This character moves you directly to the main directory when used in
conjunction with CD (notice the space between the CD and the colon):

cd

There are some minor differences between the two arguments. When
AmigaDOS searches for a pathname using a disk name as the DIR
argument instead of a drive specifier (e.g., using cd Workbench:
instead of ¢d d£0 :), AmigaDOS doesn’t care which drive the disk is
in, as long as the disk is in one of the drives. If AmigaDOS cannot find
the disk name, it displays a requester asking you to insert the specified
disk in any drive.

AmigaDOS is extremely choosy about the way that it reads and accepts
filenames; it will not accept some characters in directory names or
filenames. For example, if you have a directory named Test Drawer
and you enter cd Test Drawer, the Amiga responds with the Bad
args (or Bad arguments) error message, even if the directory is
available. AmigaDOS will not accept the space character. There are

ABAcCuUs

Example:

2.1 DIsK AND FILE MANAGEMENT

three ways to avoid this problem: Rename the file to a single-word
filename (e.g., TestDrawer); use the underscore character () to
separate the two words instead of a space (e.g., Test_Drawer); or
enclose the directory name in quotation marks when invoking the CD
command (e.g., cd “Test Drawer”). The easiest method is to use
one-word filenames. The underscore character (<Shifted> minus sign)
allows you to separate words, making filenames more readable.

Ofter} you must specify the drive you want to access. For example, if
the disk in drive df0: has the name My_data and you want to get to
ghe main directory of that disk, all you have to do is enter the follow-
ing:

cd My data

The following gives the same result, and is easier to remember than a
disk name:

cd dfo:

The latter example requires that you have the correct disk inserted in
drive df0:—DOS will not look for a disk name unless you specify one.
Here lies the basic difference in the CD command, because while CD
dfo: automatically returns you to the main directory of the disk in the
internal disk drive, CD : always returns you to the main directory of the
currently active disk.

Drive df0: contains a Workbench disk and drive df1: contains a disk
named Work_data which includes a file named Customers. Enter-
ing the following changes to this directory:

cd dfl:Customers

Entering the CD command without arguments displays Work Data:
Customers. When using the complete pathname the disk can be put
into any drive without further confusion. It is all the same to the
Amg& Now the difference between CD : and CD df0: becomes
obvious: a CD : makes the main directory the current directory, CD
d£0: makes drive df0: the main directory.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

29

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

2.1.4

Syntax:

MakeDir

makedir /A

This command performs much the same function as duplicating the
Empty drawer from the Workbench. There you can make a duplicate of
the Empt y drawer, name the duplicate drawer whatever you want and
drag files into the new drawer. An example of this is the Expansion
drawer on the Workbench disk. The greater the capacity a disk drive has,
the more powerful the MakeDir command becomes: The ability to
create directories on high-capacity disks is vital to keeping disks
organized. This command is used to keep a hard disk organized.

The MakeDir command is very easy to use. It requires only one path
statement, followed by a slash and a name for the new directory:

makedir dfl:system/monitor

It is important that all of the paths specified in the command exist. You
cannot create more than one directory at a time.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

2.1.5

Syntax:

30

Delete

delete ,,,,,++,, ALL/S,Q=QUIET/S

This command removes unnecessary directories or files from a disk or
RAM disk. The following command deletes the Extra_drawer
directory from the c directory on the disk in drive df0::

delete df0:c/Extra_drawer

The CLI cannot delete a directory which still contains data. If you try
to delete a directory that still had files in it, the CLI displays the error
code 216 (Not deleted-directory not empty). You must
move or delete these files before you can delete the directory.

ABACUS

Note:

Wildcards

2.1 DisK AND FILE MANAGEMENT

Be very, very careful with the De lete command; it’s easy to delete the
wrong file. Unlike the Trashcan on the Workbench, once you delete
a file you can’t get it back.

The Amiga wildcard is very useful with the Delete command (see
Chapter 3 for more information). Like a wildcard in poker, the file
wildcard acts as a match for many files. This wildcard is made of two
characters—a number sign (#) and a question mark (?). The following
command deletes all the files from test1 through test7:

delete dfO:test#?

There’s a second way of deleting more than one file. The Delete
command evaluates a maximum of ten files separated from one another
by a single space:

delete dfQ:utilities/notepad dfl:system/say.info

How can you squeeze ten path specifiers onto one line? You don’t have
to. The cursor can move up to three screen lines for one command line,
You press the <Return> key when you’re done entering data.

The QUIET argument keeps the file deletion process from appearing on
the screen. The following command deletes all the files and directories
from the ut i1ities directory in drive df0:, then deletes the directory
itself without telling the user that it is doing so:

delete df0:utilities all quiet

Workbench 1.3 implementation:

Syntax:

Version 1.2 and Version 1.3 syntaxes of this command are identical.
The new version of Delete doesn’t stop when an entry cannot be
found. The following command deletes the file test 3 from drive df0:,
even if AmigaDOS cannot find the file test2 on the disk:

delete dfO:testl dfO:test2 dfO:test3

The old version of the command would have deleted test1 and then
displayed an error message.

2.1.6

Syntax:

Copy

copy FROM, TO/A,ALL/S,QUIET/S

The Copy command is one of the most important and flexible com-
mands for manipulating files using the CLI. This command can copy a

i1

2. THE CLI COMMANDS

32

AMIGADOS INSIDE AND OUT

single piece of file or a complete directory on any device of your choice
that can receive data. Naturally it can also copy within a disk drive. The
argument template reads:

FROM, TO/A,ALL/S,QUIET/S

The FROM argument represents a path description for the source data or
source file. Because an /A qualifier doesn’t exists, there is no input
obligation. If the FROM description is wrong, then the actual directory
becomes the source file. The TO argument represents the destination
path for the copy operation. The description depends on the source data:

@ FROM refers to a single file

In this case the destination path can be any subdirectory you choose
within the device, or a device that you specify. It treats the destination
device as a drive, so the data is put in the desired directory under the
same name. The following example takes the file test from directory
c of drive df0: and creates a duplicate of the same name in the ¢
directory of the RAM disk:

copy df0:c/test ram:c

The c directory must already exist in the RAM disk (see the description
of the MakeD1ir command for details on making directories). If there is
already a file in the destination directory named test, AmigaDOS
overwrites the file, AmigaDOS is consistent in this: It overwrites an
existing file without warning,

The following command copies the startup sequence text file to a
printer:
copy df0:s/startup-sequence prt:

If you want the copy to have a name other than the one already stated,
you have 10 specify that filename.

If a subdirectory with the same name already exists in this drawer, the
copy is placed under the old name, because in the input there isn’t a
difference between drawers and data names. Here is an example:

copy df0:c/makedir ram:md
This copies the MakeDir command in the c directory to the RAM
disk under the name md. There cannot be an existing subdirectory in the
RAM disk named md. If such a subdirectory already exists, then the
MakeDir command is stored under its default name.

Now we come to the second option of the FRCM argument.

ABACUS

2.1 DISK AND FILE MANAGEMENT

b) FROM refers to an entire drawer

The destination path must point to a directory onto which you want to
copy files. Unfortunately you cannot specify the printer as a destination
device. The Copy command cannot send multiple files to a printer.

Usually only the data in the drawer itself is copied. Subdirectories are
ignored. The command should include the subdirectories you want
copied as well. The following command copies the contents of drive
df0: onto the hard drive (dh0:) into an existing directory named
Games:

copy df0: Dh0:Games all

The Diskcopy command copies entire disks more efficiently than the
Copy command. However, using Copy brings a little order to the disk.
When files are edited they may become fragmented on a disk, this
means they are scattered over many different tracks. When copied with
the Copy command they are copied to the destination disk so they are
on tracks that are close to one another. Now the read head of the floppy
does not have to move as far to access the file,

Workbench 1.3 implementation:

Syntax:

copy FROM,TO/A,ALL/S,QUIET/S,BUF=BUFFER/k,CLONE/S,DATE/S,
NOPRO/S,COM/S

When you want to copy data to a directory that doesn’t exist on the
destination disk, the new version of the command creates a directory of
the same name on the destination disk. The source files are then copied
into this directory.

The new Copy command also allows you to print the contents of a
directory to a printer. This output may be distorted if the directory does
not contain only true ASCII data files.

Now we come to the added arguments mentioned in the argument
template above:

The BUFFER (or BUF) argument allows the user to allocate a number
of 512 byte buffers to be used in the copying process.

The CLONE, DATE, NOPRQ and COM arguments represent additional
information passed to the copy. The additional information that DOS
prepares for all files and directories state the date in which the file was
created, and the protection bits listed under the description of the
Protect command. Up to 80 characters of comments can be added to
afile.

The List command allows you to see this information. This is
explained in the next section.

33

2. THE CLI COMMANDS

Example:

AMIGADOS INSIDE AND OUT

The CLONE argument copies the original file’s creation date, protection
bits and comments to the new file. ’

The DATE argument copies the original file’s creation date to the new
file.

The COM argument copies the original file’s comments to the new file.

The NOPRO argument suppresses the protection bit information when
copying the new file,

The following command copies a data file named Test to the RAM
disk using the original file’s creation date and comments. No protection
bits are passed to the new file:

copy Test ram: DATE COM NOPRO

2.1.7

Syntax:

Names

SizelDir

Protection
bits

34

List

list DIR,P=PAT/X,KEYS/S,DATES/S,NODATES/S, TO/K,S/K,
SINCE/K,UPTO/K, QUICK/S

The List command lists important file information that the Dir
command doesn’t show.

The List command displays the following information, filename or
directory name, size of file or Dir, protection bits, date and time of
creation.

The filenames and directory names appear on the screen in their order on
the disk. List makes no distinction in names between files and
directories.

The next entry in the listing distinguishes files from directories.
Filenames list their file sizes in bytes; directories display the word Dirx
in the location reserved for file sizes.

The next entry displays the protection bit status of each file. All the file
entries listed above contain four protection bits. Each protection bit
letter represents the following:

(read) should allow reading of the file
(write) should allow writing to the file
(execute) should allow execution of the file
(delete) allows entry to be deleted

Q0 LR

If one or more of the options is suppressed a dash appears in place of
that option. A file with the combination rwe- therefore cannot be

ABACUS

Time & date

Bottom line

2.1 Disk AND FILE M ANAGEMENT

deleted. The remaining flags (rwe) aren’t implemented at the time of
this writing. DOS leaves these flags alone.

The Protect command described later lets you change the status of
these flags.

The next two entries list the time and date when the file was first
created. These date entries always appear if you enter the correct date
with Preferences, orif you have an Amiga with a battery-backup
realtime clock.

At the bottom of the list the number of files and the number of directo-
ries on the disk appear, as well as the number of blocks (1 block=512
bytes=0.5K) free on the disk.

The following command displays a list of files and directories contained
in the current directory of drive df0; (the internal disk drive):

list df0:

If the Workbench disk is in drive df0: text similar to the following
appears on the screen.

>1 list d4f0:

Directory ™df0:" on Sunday 18-Oct-87

Expansion.info 346 rwed 02-Mar-87 23:29:10
Trashcan Dir rwed 02-Mar-87 23:29:10
.info 82 rwed 09-Jun-87 12:43:46
c Dir rwed 02-Apr-87 09:44:21
Clock.info 338 rwed 02-Mar-87 23:31:49
Demos Dir rwed 15-Apr-87 07:57:18
Clock 19668 rwed 02-Mar-87 23:32:20
System Dir rwed 06-~Apr-87 15:11:06
1 Dir rwed 02-Mar-87 23:33:26
devs Dir rwed 02-Mar-87 23:35:49
s Dir rwed 16-Apr-87 08:43:34
t Dir rwed 06-Apr-87 15:08:45
Preferences.info 418 rwed 02-Mar-87 23:36:00
Preferences 58136 rwed 02-Mar-87 23:36:20
Demos.info 346 rwed 02-Mar-87 23:36:22
fonts Dir rwed 02-Mar-87 23:37:32
libs Dir rwed 02-Mar-87 23:37:59
Empty Dir rwed 09-Jun~-87 12:46:57
Utilities.info 346 rwed 02-Mar-87 23:38:08
Disk.info 306 rwed 02-Apr-87 09:05:36
System.info 346 rwed 02-Mar-87 23:38:13
Empty.info 346 rwed 02-Mar-87 23:38:16
Trashcan.info 430 rwed 02-Mar-87 23:38:17
Utilities Dir rwed 15-Apr-87 07:57:45
Expansion Dir rwed 15-Apr~87 07:35:10

12 files -~ 13 directories ~ 196 blocks used

35

2. TaE CLI COMMANDS

DIR

PAT

KEYS

DATES

NODATES
TO

SINCE

UPTO

QUICK

36

AMIGADOS INSIDE AND OUT

There’s more to List than you might think. Invoking the argument
template (List ?) displays the following:

DIR, P=PAT/K,KEYS/S,DATES/S,NODATES/S, TO/K,
S/K,SINCE/K,UPTO/K,QUICK/S

Don’t panic! Most of the time all you’ll ever need is the List
command without arguments. Here’s an overview of each argument:

The DIR argument lets you specify another directory (e.g., List
ram:c).

The PAT argument allows you to use patterns or wildcards. The
wildcard (#7) is extremely useful for finding selected entries (e.g.,
List pat a#? displays only the entries beginning with the letter a).

This argument returns the starting blocks of the selected programs on
the disk (only AmigaDOS “power users” will use the KEYS argument).

The DATES argument enables date display in the format DD-MMM-YY
(this output is the default for the List command).

The NODATES argument disables date display.

The TO argument specifies the file or device that should receive the
output (e.g., List d£0: to prt: sends the listing of df0: to the
printer).

The S (subname) argument makes it possible to search for entries
arranged according to their subnames. A subname is part of a name.
Chapter 3 lists details about the input #?subname#? in the Pat
option.

The SINCE argument displays all entries created since the specified
date. The specified date must be in DD-MMM-YY format, or stated as
the words Yesterday or Today.

The UPTO argument displays all entries created before the specified date.
The specified date must be in DD-MMM-YY format, or stated as the
words Yesterday or Today. The following example of SINCE and
UPTO includes the Yesterday specifier;

list since 09-jun-87 up to yesterday

The QUICK argument lists the only entry names, as well as the number
of blocks remaining.

The following command, would be entered on one line in the Amiga, it
searches for the ¢ subdirectory in drive df0: and looks for all the
commands that end with CLI. The command then looks for all these

ABACUS

Syntax:

BLOCK
NOHEAD

FILES
DIRS

LFORMAT

Bnr s

2.1 DisK AND FILE MANAGEMENT

entries created after September 10, 1986 and sends all these entries o
the printer (no dates appear on the printout):

list df0:c pat #?CLI nodates to prt: since
10-sep-86 upto today

Workbench 1.3 implementation:

list DIR, P=PAT/K,KEYS/S,DATES/S, NODATES/S, TO/K,S/K,
SINCE/K, UPTO/K, QUICK/S, BLOCK/S,NOHEAD/S, FILES/SDIRS/S, LR
RMAT/K

There are some very useful arguments added to this version:
The BLOCK argument displays file sizes in disk blocks instead of byte.

The NOHEAD argument suppresses the display of directory names and
creation date. This argument always appears when the List commani
is entered with a directory name (e.g., List d£0:). In addition,
NOHEAD disables the display of the closing line (xx files ~yr
directories—-zz blocks are used).

The FILES argument displays the filenames only.
The DIRS argument displays the directory names only.

The LFORMAT argument allows the formatting of List text for use &
script files. The output format specification follows the LFORMA?
argument enclosed in quotation marks:

list 4f0: LFORMAT="..."

Any text can be used in the output format specification. When the
character string %s appears as the output format specification, Amiga-
DOS inserts the current filename at that point. The following exampl
inserts the filenames listed in directory c in the resulting output:

Input:

list df0:c LFORMAT="This is the $s command”
Output:

This is the Run command

This is the Fault command

This is the Install command
This Is the Stack command

This is the Prompt command

This is the Else command

This is the Status command

This is the Ed command

This is the BindDrivers command
(...)

31

2. The CLI COMMANDS

38

AMIGADOS INSIDE AND OUT

The following use of the LFORMAT argument can be used to create a
script file that removes all of the d (delete) protection bits in drive
df0:’s Text directory:

list >Script_file df0:Text LFORMAT="protect %s -d”
The result could be something like this:

protect Text 1 -d
protect Text 2 -d
protect Text_3 -d
protect Letter_1 -d
protect Letter_2 -d

This file can be executed directly using the Execute Script file
command (see the description of the Execute command).

The %s string can appear more than once in the output format specifica-
tion. If two % s are used the current filename appears in both locations.
When three of these strings are used, the second and third occurrences
display the filename while the first occurrence displays the path of the
specified directory. The following example creates a script file that will
copy a backup of each CLI command to the directory named
Directory:

Input:

list >Script_file c: LFORMAT="copy %s%s to
directory/%s.BAK"

Qutput:

copy c:Run to directory/Run.BAK

copy c:Fault to directory/Fault.BAK
copy c:Install to directory/Install.BAK
copy c:Stack to directory/Stack.BAK
copy c:Prompt to directory/Prompt.BAK
copy c:Else to directory/Else.BAK

(.ed)

When four %s are used, the occurrences alternate between the specified
path description and filename.

The Version 1.3 List command still has more functions. The wildcard
features increased flexibility. It’s now possible to use the wildcard with
the path description. The following example lists all the files in the c
directory beginning with the letter m:

list df0:c/m#?
The Version 1.2 List command would display this message:

Can't examine "df0:c/m#?": object not found

ABACUS

Protection
bits

2.1 DisK AND FILE MANAGEMENT

In addition to the existing rwed protection bits, Workbench 1.3 adds
three new protection bits: h (not implemented), s (Script), p (Pure) and
a (Archive). See the description of the Protect command for details
about these protection bits.

2.1.8

Syntax:

Rename

Rename FROM/A, TO=AS/A:

This command assigns new names to a file. The command is useless
without arguments. It must have two paths:

1. the complete path description of the object to be renamed
2. the new pathname
This command appears to be very simple. The following changes the
filename My-text to the name Essay, keeping the file in the same
directory as before:

rename text/My-text text/Essay
Actually the Rename command is much more flexible. The example
above is only a special case where the path stays the same. You can
also transfer data or directories within the disk data structure. For this
you must make another distinction:
1. Therenamed object is a single data object
In this case the destination path out of the directory description must be
followed by a new name for the file. The following example places the

CLI Format command located in the System directory into the ¢
directory under the name Formatting:

rename df0:system/Format df0:c/Formatting

If there wasn’t a ¢ drawer or if the command could not find the
Format command, the following error message would appear:

Can't rename system/Format as c/Formatting
2. The renamed object is a drawer

If you only want to change a drawer name, use a simple Rename. For
example:

rename df0:Expansion df0:Expan

39

2. T CLI COMMANDS

Example:

Note:

AMIGADOS INSIDE AND OUT

You can even move a drawer to a different place in the disk data
structure.

Suppose you have a directory on disk named BASIC which contains the
subdirectory PROGRAMS. In addition, a directory named GAMES which
contains a subdirectory named ADVENTURES exists in the main direc-
tory. The following command places the entire GAMES directory and its
contents in the PROGRAMS directory:

rename df0:GAMES to df0:BASIC/PROGRAMS/GAMES

You must specify the new directory’s name as well as the source direc-
tory’s name. The to argument can be omitted.

We found a bug when using the Rename command in conjunction
with the RAM disk of Workbench 1.2. The following creates two

directories named Test in the main directory of the RAM disk:
makedir ram:test

makedir ram:test/under

rename ram:test/under ram:test

dir ram:

To solve this problem, rename one of the two directories immediately.

You cannot move a file or drawer from one disk drive to another using
Rename. The following input is not permitted:

rename df0:c/type ram:type

Only the Copy command can perform this task.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

There are no changes to the Rename command. It is no longer possible
to have two files in the RAM disk with the same name due to a better
RAM handler.

2.1.9

Syntax:

40

Diskcopy

diskcopy FROM/A,TO/A,NAME

The Diskcopy command is the CLI equivalent of the Duplicate
item from the Workbench pulldown menu.

Unlike the CLI Copy command, this produces a complete copy of the
entire disk. The following example copies a disk using only one drive:

ABACUS

2.1 Disk AND FILE MANAGEMENT

diskcopy from df0: to df0:
The TO argument is required; the FROM argument may be omitted.

If you are certain that the data on the destination disk is no longer
needed, press the <Return> key to begin the copy operation. You can
abort the copying process by pressing <Ctrl><C>. The following
message appears:

**x% BREAK
Disk Copy Abandoned.
Remember to insert original disk

Disk Copy Terminated

If you press <Curl><C> while the Amiga is writing to the destination
disk, not all of the information will be contained on the disk. You must
remember to put the original disk back in the drive after aborting the
copy procedure.

In the Workbench a message may appear telling you the number of disk
changes you’ll have to make during the copy process. It looks like this:

The Disk Copy will take 4 swaps.

An Amiga 500 with 512K could copy a disk with just three disk
changes. The waiting time between disk changes can be bothersome,

This problem doesn’t exist if you own an Amiga with two disk drives.

There are two differences between the Workbench Duplicate item
and the Diskcopy command. First, the NAME argument isn’t always
needed. This argument lets you assign a different name to the destina-
tion disk from that of the source disk. The following example copies
the contents of drive df0: into drive df1: then assigns the name Work
12 to the new disk (note the use of quotation marks around the name
because of the space between Work and 1.2):

diskcopy drive df0: todrive dfl: name "Work 1.2"

Second, DOS can tell the copy from the original every time from the
date and time of the copy operation,

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

41

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

2.1.10

Syntax:

Relabel

relabel DRIVE/A,NAME/A

This command assigns a new name to a disk. The following line
changes the name of the disk in drive df1: to Games:

relabel dfl: Games

There must be a space after the drive specifier. If the filename itself
contains a space (e.g., Test disk), you must enclose the filename
within quotation marks. The following example renames the disk in
drive df2: to Test disk:

relabel df2: "Test disk"™

The maximum length allowed for disk names is 30 characters. Longer
names can pose problems for the Workbench.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

2.1.11

Syntax:

42

Info

info DEVICE

The Info command appears twice in this book: here and in Section

2.2. This version of the Info command displays disk drive informa-
tion.

Entering this command without arguments displays information about
the currently connected drives. An example of this output follows:

Mounted disks:

Unit Size Used Free Full Errs Status Name

DF0: 880K 1645 113 93% 0 Read A500 WB1.2 D
DFl: 880K 534 1224 30% 0 Read/Write TextPro

Volumes Available:
AS00 WB1.2 D [Mounted]
TextPro [Mounted]

o

ABAcCuUS

2.1 DisK AND FILE MANAGEMENT

The first section contains information about all the mounted (connected)
disk drives. The Unit category lists the drive specifier. The Size
category lists the disk capacity as specified in the Format command.
The Used and Free categories display the number of blocks (1
block=0.5K; 2 blocks=1K) used and the number of blocks still avail-
able. The Full category lists the percentage of the disk used. A zero
under the Err category means that no defective blocks (errors) exist.

The Status category gives the position of the write protect on the
disk. The disk in drive O can only be read. The last category (Name)
displays the names of the respective disks.

The second section (Volumes Available) lists the names of the
disks so that you can check disk names without removing the disks
from the drives.

Workbench 1.3 implementation:

Syntax: info DEVICE
The new Info command includes the DEVICE argument. You can
receive information about the specified device only. The Info
command automatically reformats data for easily reading longer names
using a Tab function.

2.1.12 Install

Syntax: install DRIVE/A
The Install command converts Amiga format disks to bootable
disks (i.e., an installed disk can be used to boot up when you turn the
Amiga on). The Workbench disk is an installed disk.
The following example makes the formatted disk in drive df0: into a
bootable disk by placing the boot block onto the disk:

install df0:
Note: You cannot make a hard disk drive into a bootable disk. KickStart 1.3,

located in ROM on the Amiga 500 and 2000, should let you boot from
a hard disk without using an Install command on the hard disk
(never use the Install command on a hard disk).

If you install a newly formatted disk then reset the Amiga immediately,
the system resets, stops and enters the CLI. There are a number of
reasons for this. A bootable disk looks for CLT commands—it needs
these commands to function. The trouble is, it doesn’t know where to

43

2. THE CLI COMMANDS

Syntax:

| NOBOOT

’ CHECK

44

AMIGADOS INSIDE AND OUT

search for these commands. You have to copy the essential directories
on the Workbench disk onto the new disk. These directories are:

c
1
system
devs

s

t
fonts
libs

In addition, you would have to write a startup sequence (see Chapter 6
for detailed information about startup sequences and script files) to
assign system directories within the disk.

The simplest solution to having a bootable disk is to copy the Work-
bench disk using the Diskcopy command. This copies the boot block
and all the necessary directories to the new disk. Then if you need
memory for other applications, delete the directories and files not needed
by the booting procedure.

‘ Workbench 1.3 implementation:

install DRIVE/A,NOBOOT/S,CHECK/S

The added arguments are NOBOOT and CHECK.
The NOBOOT argument makes a bootable disk non-bootable.

The CHECK argument examines the boot block and tells the user
whether the boot block has been damaged. This damage may have been
done by a computer virus. This virus is a program that loads into the
computer when the disk is accessed and copies itself onto any disks
placed in that drive while the computer is turned on. The virus can
cause extensive damage if the disk is used further.

A virus cannot do anything to a non-system disk because it has nothing
to do with controlling the computer. The CHECK argument displays the
following message for non-bootable disks:

No bootblock installed

When the CHECK argument examines a boot disk with an intact boot
block, the message reads:

Appears to be normal V1.2/V1.3 bootblock

The CHECK argument displays the following message if the boot block
is corrupt or abnormal:

May not be standard V1.2/V1.3 bootblock

ABACUS

2.1 DisK AND FILE MANAGEMENT

There is a good possibility your computer has been infected by a virus
if the disk is one that you formatted. The results of viruses vary from a
message on the screen, to a Guru Meditation, to completely formatting
the hard disk. There are as many remedies as there are viruses.

We’ll briefly describe one method to remove a virus from an infected
disk. Turn off the computer for at least five seconds using the main
power switch. Boot it with a disk that you know is not infected with a
virus. Because most users make a backup copy the first time they use
the new Workbench disk, the original disk will almost always work.
Start the Amiga with this disk and open a CLI window. Enter the
following command:

dir >nil: ram:
copy c:install ram:
path ram: add

Put the Workbench disk back in a safe place. Now check out all of your
disks for viruses, even if you only have one drive, using the install
df0: check command. The boot block can be installed by using
install d£f0:. When you have done this to all of your disks, you
should again have control of the boot blocks. Unfortunately this only
takes care of the simple viruses hiding in the boot blocks. Smart
viruses infect other parts of the disk (such as trackdisk.device).
In those situations contact your local dealer or a user’s group as quickly
as possible—they may be able to help you.

2.1.13

Syntax:

Type

type FROM/A,TO.OPT/K
The Type command displays ASCII files on the screen, device or to a
file. The following command displays the startup-sequence
script file in the s subdirectory of the Workbench disk on the screen:
type df0:s/startup-sequence
The output can be stopped temporarily by pressing any key. Pressing
the <Backspace> key continues the display. Pressing the <Ctrl> and
<c> keys aborts the display and returns to the DOS prompt (>1).
Adding to prt: sends the output to the printer. The following exam-
ple performs the same function as above except it sends the output to a
printer:

type df0:s/startup-sequence to prt:

45

2. Tae CLI COMMANDS

AMIGADOS INSIDE AND OUT

The data can also be redirected to other output devices. The following
example sends the startup~sequence file to the t directory and
stores it under the name mytext:

type :s/startup-sequence t/mytext

Adding the OPT n argument displays text with line numbers. This is
useful for viewing a BASIC program stored in ASCII format.

The OPT h argument displays each word of the file being typed as a
hexadecimal number. OPT h is intended mainly for the true hacker. The
Type command is perfect for text output when the data doesn’t contain
any control characters. If you try to Type a DOS command (e.g.,
Type c/Type) you’ll get garbage on the screen. However, the Type
¢/ Type OPT h command organizes the screen into a table like this:

0000: 000Q03F3 00000000 00000002 00000000
0010: 00000001 CCOCOO4F 000001C4 DOCOO3E9
0020: QO00004F 286A0164 700C4E9S 2401223C
0030: 00000085 4SFAFFEE 286CFFFC 2FOC2F02

On the far right we have our text displayed in ASCII. Each period
stands for a non-displayable character that AmigaDOS handles by
displaying a period.

The first column lists the hexadecimal line numbers. The middle
column displays the contents of the file using four long words. Each

long word is made up of four bytes, and each byte represents one
character, so each byte corresponds to a character on the right margin.

The I in the last line stands at the 52nd byte position (=3*16 +4). The
ASCII code that is associated with the text for an I reads: $49
($=hexadecimal) or 73 decimal (4*16 +9).

Workbench 1.3 implementation:

Syntax:

Version 1.2:
Version 1.3:

46

type FROM/A,TO,OPT/K, HEX/S,NUMBER/S

The options OPT h and OPT n arguments can also be accessed using
the HEX and NUMBER arguments without the opt argument. For

example:

type s:startup-sequence opt n
type s:startup-sequence number

ABACUS

2.1 Disk AND FILE MANAGEMENT

2.1.14

Join

Syntax: 3040 yyrsrrrrerere s AS/A/K

The Join command lets you concatenate (join) up to fifteen files to
create one new file,

The fifteen commas in the argument template represent the maximum
fifteen source files. The AS argument must follow. Then follows the
path description for the concatenated file (/A). The simplest form of the
Join command can simulate the basic function of the Type com-
mand, By placing an asterisk behind the command you specify the
source data and Join displays it on the screen. The following
demonstration displays the text of the startup sequence on the screen:

join df0:s/startup-sequence as *

There is no argument available to let us print multiple files at one
time. The Copy command accepts the wildcard, but that really doesn’t
allow more data to be accessed. The Join command makes it possible
to print out 15 data files right after each other. The following prints
text files text1 through text5:

join textl text2 text3 text4 as prt:
The Join command also has something to offer the compiled language

programmer. If you run out of room using your editor, this command
allows you to concatenate separate files into one file before compiling.

Workbench 1.3 implementation:

Syntax: 3040 ysrsrrrrserss . AS=TO/K
The Join command now understands the TO argument as well as the
AS argument.

2.1.15 Search

Syntax: search FROM,SEARCH/A,ALL/S

The Search command lets you look for data using a character string.
If AmigaDOS finds the character string it displays the name of the file
in which the string is located, followed by the line number and the line
that contains the string,

47

2. THE CLI COMMANDS

FROM

SEARCH

Wildcards

AMIGADOS INSIDE AND OUT

The FROM argument represents the complete path specification of a
directory and a single data item. If the FROM argument is omitted, the
command looks in the current directory.

The SEARCH argument must precede the search string:
search search "Goodness gracious”

The Search command searches the current directory for the words
“Goodness gracious”. Quotation marks must surround any string
containing a space. Search makes no distinction between uppercase
letters and lowercase letters. If you want to search all subdirectories you
can direct the Search command to do so.

The command has a couple of extra options:

Like the new List command, this command allows you to complete
the pathname using wildcards. The following command searches for all
files in a subdirectory starting with three letters:

search df0:?/#?2¢cli search window

would find all the files ending with CLI in any directories containing
one letter names, containing the word “window.”

Like all of the CL.I commands, the Search command can be stopped
by pressing <Curl><C>. When searching all the directories, pressing
<Ctrl><D> moves AmigaDOS to the next file.

When AmigaDOS returns the message Line x truncated, the lines
in the file being searched are 100 long (this happens often).

The Search command is very helpful to the C programmer. The
command can quickly find the desired include directories.

Workbench 1.3 implementation:

Syntax:

48

search FROM, SEARCH/A, ALL/S,NONUM/S,QUIET/S,QUICK/S,FILE/S

The new Search command replaces the message Line xx
truncated with Warning: line xx too long. In case the
search operation comes up empty (null), AmigaDOS returns error code
S. The error code can be analyzed in a script file (see Chapter 6).

ABACUS

NONUM

QUIET
QUICK

FILE

2.1 DiSK AND FILE MANAGEMINT

There are four new arguments:

The NONUM argument suppresses line number output when the sexch
finds multiple items. The text found appears at the left margin ofthe
screen for easy readability.

The QUIET argument searches files without output.

The QUICK argument displays the filenames being searched next tome
another instead of under one another. A new directory begins a new Ine.

The FILE searches for a specific filename instead of a string.

2.1.16

Syntax:

FROM

TO

COLSTART

Sort

sort FROM/A,TO/A,COLSTART/K
The Sort command sorts (alphabetizes) text files.
The arguments are as follows:

The FROM argument specifies the pathname of the file to be sortd.
Because this cannot be a directory, an additional input is necessary (/3).

The TO argument specifies the destination of the sorted data. Her a
pathname or device name must be given. The FROM data isn’t realy
changed. If you want output on the screen, for example, you must erer
the * character. Using the prt : device directs the sorted output tohe
printer.

The COLSTART argument specifies the column at which the sored
output should start. For example, if you reserve 10 places for frst
names and a certain number of places for last names the following sects
the last names starting at the tenth column:

sort from fred to ned colstart 11

If you omit the COLSTART argument the sorting begins at the fist
column,

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

2.1.17

Syntax:

Protect

protect FILE/A,FLAGS:

The Protect command lets you set a single protection bit (see
Section 2.1.8 for a detailed description of the four protection bits).

Read~the file can be read
Write—~the file can be written to
Execute—an ‘'execute' is allowed
Delete—an entry can be deleted

a0 x

The delete bit can be activated from DOS. This bit acts like the write
protect on disks, except the delete bit guards an individual file from
deletion instead of the entire disk. The following command sets the
delete bit on the Let ters directory in drive df1::

protect dfl:Letters

Files inside directories can be protected by activating their own delete
bits. The following example sets the delete bit in the Invitations
file contained in the Let ters directory:

protect dfl:Letters/Invitations rwe

If you view a protected file using the L.ist command, the protection
bits appear as four hyphens. These hyphens indicate that the file can no
lIonger be accessed. Any attempt to erase the file returns an error code.
The protection can be removed using the FLAGS argument. The follow-
ing command enables all four protection bits in the Invitations file:

protect dfl:Letters/Invitations rwed

Workbench 1.3 implementation:

Syntax:

50

Protect FILE/A,FLAGS,ADD/S,SUB/S

Workbench 1.3 adds four new protection bits to the Protect com-
mand:

h (Hidden)—controls visibility of certain file entries
s (Script)—controls starting script files w/o Execute
P (Pure)—controls program loading using Resident

a (Archived)—controls file copying (Kickstart 1.3)

When using Workbench 1.3/Kickstart 1.2 to start your Amiga you
must pay particular attention to the p and s flags.

ABACUS

h(idden)

s (cript)

p(ure)

a(rchive)

2.1 DisK AND FILE MANAGEMENT

The hidden protection bit suppresses the entry of the respective files
in the directory. For example, the .info files responsible for the icon
on the Workbench disk can be made invisible in the directory list.
Larger directories can be made more readable using this method.

The script protection bit deals with script files. When the script flag
is positive (set), the script file can be started from a shell. It is not
necessary to enter the Execute command to invoke a script file any-
more. A set script flag automatically calls an Execute command.

The pure protection bit allows the associated program to be loaded
using the Resident command. By doing this it is always ready for
the user and it also doesn’t have to be loaded from the drive anymore.

The pure protection bit is necessary because not every program has
the qualities needed for using the Resident command. More
information about the Resident command can be found in Chapter 4.

The archive protection bit controls the option of copying files under
Kickstart 1.3. The Copy command only copies files that have negative
(unset) archive protection bits. A file with a positive (set)
archive protection bit is said to be archived. The archive protec-
tion bit goes negative when you write to the file. A new archive
protection bit must be set.

One practical application: When you work with the RAM disk, you can
activate a script file as a background process that can save all modified
data on a disk. When you place the commands Copy, Wait and
Execute in working memory, the disk drive eventually performs a
save operation. The following file acts as a script file to do just this:

wait 5 min
copy ram:#2 to df0:
execute BACKUP_SCRIPT

This script file also functions under Kickstart 1.2. The complete
contents are saved whether the RAM disk has been written to in the last
five minutes or not.

The ADD and SUB arguments make individual protection bits positive
or negative. These are the equivalents of adding + and - to change pro-
tection bit status. The following examples show how ADD and SUB
work:

SUB

Status before ———-—rwed
Input protect file d sub
Status after ————rwe-
ADD

Status before ———eTWe=
Input protect file d add
Status after ----rwed

51

2. Tee CLI CoMMANDS

AMIGADOS INSIDE AND OUT

The ADD and SUB options can be replaced by plus and minus signs.
The input is simplified this way:

ABACUS

2.1 Disk AND FILE MANAGEMENT

Status before ----rwed

Input protect file -w

Status after —--—-r-ed

+

Status before -=—-r-ed

Input protect file +w

Status after --——rwed

1]

2.1.18 Filenote
Syntax: filenote FILE/A,COMMENT/A

The Filenote command allows you to place up to 80 characters of
comments in a file or place a comment about the version number in a
program. You can read the comments later using the List command.
The text appears on a separate line. A colon at the beginning of the line
indicates that it is a comment. For example:

filenote c/fllenote “This conmand lets you add 80 characters to files!®

The quotation marks must surround any text containing spaces. If the
List command is used on the ¢/£ilenote file, this is the result:

c/filenote 700 rwed 02-Mar-87 23:30:19
: This command lets you add 80 characters to files!

Two final observations about the Filenote command: Comments
inserted using Filenote don’t copy using the Copy command. In
addition, if the destination file already exists, the comments in the
destination file remain intact.

Workbench 1.3 implementation:

52

Version 1.2 and Version 1.3 of this command are identical.

2.1.19

Syntax:

FILE

DATE

TIME

Note:

SetDate

setdate FILE/A,DATE,TIME

This command makes it possible to store the correct date entry of files.
This is useful for Amiga users who have battery-powered realtime
clocks in their Amigas—time is set without opening Preferences.

The FILE argument represents the path description of the directory/file.
The specified file must be found and in the same format as it appears in
the List command.

The DATE argument represents the current date. If the old date is only
within a week of the current date, then you can enter the current day’s
name for the DATE argument, as shown in the following example:

setdate text/Letter saturday

The command sets the date correctly by itself. The correct date can even
be set by using the word yesterday as the DATE argument. These
words appear in the listing executed by the List command. If you
want to pre-date something (assign a future date), the List command
shows the word futuxre for any future datings.

The TIME argument sets the current time.When the time setting is
correct, then the entire date description appears. If you do not set the
time, the time automatically sets to 00:00.

Date settings before January 2, 1978 are usually not shown. When this
occurs, two empty spaces appear in the List display.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

2.1.20

Syntax:

DiskDoctor

diskdoctor DRIVE/A

The DiskDoctor attempts to save data on disks that have read/write
errors or possible data corruption in general.

The DRIVE argument represents the disk drive specifier (e.g., df0:,
df1:, etc.). The following example invokes the DiskDoctor and

53

2. THE CLI COMMANDS AMIGADOS INsiDE AND OUT

examines the disk in dfl: (the first external disk drive on an Amiga
1000 or 500):

diskdoctor dfl:

Error The following messages that are displayed by DiskDoctor during
messages execution are documented in the following section.

DiskDoctor cannot run in the background

This is displayed when you try starting DiskDoctor as a background
process using the Run command. DiskDoctor can only be executed
directly (without Run).

Unknown device xxx

This occurs when the description of a device name that DOS doesn’t
know is entered (xxx stands for the device name).

Not enough memory

DiskDoctor needs more memory than the system can allocate. Hint:
Close all unnecessary windows and/or end all other running programs.
This message also appears when you try to use DiskDoctorona
device other than a disk drive (printer, serial device, etc.).

Device xxx not found

DiskDoctor cannot find the desired device. This error almost never
occurs with normal 3.5" drives because of the trackdisk.device
found in ROM (in WOM for the Amiga 1000). This error is usually a
result of a device name entry error in the Mount list for unusual drives
(e.g., 5.25™). By using a special disk drive the error message appears
when the device is not found in the Mount list.

Unable to open disk device
The disk device was found, but it cannot be opened
Unexpected end of file

DOS handles the file with a great amount of redundancy. The advantage
of this redundancy is that it's easier to reconstruct this file if the file
somehow becomes damaged. This error message occurs when the file is
shorter than is declared in the file header.

Error: Unable to access disk

This occurs when the drive is unable to respond (e.g., no disk in the
drive).

54

ABACUS 2.1 DisKk AND FILE MANAGEMENT

Disk must be write enabled

Write protects prevent writing to the disk. Because DiskDoctor
wants to write to the disk, write protects must be set to write enable
(no hole in the write protect area),

Unable to read disk type - formatting track zero

DiskDoctor cannot read the disk type from track zero, sector zero. It
reformats that track and sector.

Track zero failed to format - Sorry!

There is a good chance of a defect on track zero of the disk when this
message appears. There may be a problem with the drive itself (read/
write head is incorrectly positioned) if this happens frequently with
other disks.

Unable to write to root - formatting root track

DiskDoctor cannot rewrite the track on which the root block
appears. This root block acts as the reference point of all the disk direc-
tories. DiskDoctor tries to format the track (track 40, side 0) and
install the disk. Because the name of the disk is found on this track,
DiskDoctor assigns the name Lazarus to the disk.

Root track failed to format - Sorry!
The root track cannot be formatted. The disk cannot be rescued.
Cannot write root block - Sorry!

The root block cannot be written. DiskDoctor can’t do anything
about it.

Warning: File xxx contains unreadable data

The specified file (xxx) cannot be reconstructed fully and doesn’t
contain any readable data. You may be able to salvage some of this data
using a disk monitor. In most cases, the file must be erased by answer-
ing Yes to the “Delete corrupt files indirectory yyy?”
prompt.

Attention: Some file in directory xx is unreadable and has
been deleted

DiskDoctor has taken the initiative and erased a file because too
much information was missing for reconstruction.

55

2. Tue CLI CoMMANDS AMIGADOS INSIDE AND OUT

Failed to read key

A block cannot be read

Failed to rewrite key

A block cannot be rewritten
Warning: Loop detected at file xx

Normally, a file stands at a single block together with a block pointer
that connects it to the rest. This error message means that the given file
has a loop in the connection. A file block loops back to a block that
has already been read. The read operation of the file may never have
ended because the same data was being read all the time.

Parent of key xx is yy which is invalid

A block exists which is not connected to the list because the operating
block is useless.

Hard error Track xx
Track number xx cannot be read either because it was incorrectly
formatted or because of mechanical failure. The problem may be caused
by the reconstruction of some files or directories.

Key xx now unreadable
The block with the number xx is no longer readable.

Replacing dir xx

The given directory can be reconstructed and is now being integrated
into the directory structure of the disk.

Inserting dir xx

The given directory can be reconstructed and is now being entered in the
main directory of the disk,

Replacing file xx

The given file can be reconstructed and is now being entered into the
original directory.

Inserting file xx

The given file can be reconstructed and is now being entered into the
main directory of the disk.

Now copy files to a new disk and reformat this disk
This is the closing message of DiskDoctor. All rescued files and

directories can now be copied to a new disk. Then the defective disk
should be reformatted.

56

ABACUS 2.1 DisK AND FILE MANAGEMENT

Workbench 1.3 implementation:

DiskDoctor can also be used for reconstructing the recoverable RAM
disk.

The use of the Version 1.2 and 1.3 DiskDoctors are identical. The
1.3 program works better than the 1.2 program.

2.1.21 Diskchange

Syntax: " diskchange DEV/A
This command deals only with material for Amiga owners who use §
1/4" disk drives. These drives, unlike the 3.5" drives, don’t come with
DOS already on them. In this case, the Diskchange command is

given, followed by the name of the given device (the DEV argument).
After that the new disk can be selected.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

57

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

2.2

CLI System Commands

The following section describes system commands, including the com-
mands that are related to the CLI itself.

2.2.1

Syntax:
Multitasking

58

NewCLI

newcli WINDOW, FROM

The NewCLI command gives the Amiga user access to multitasking.
Multitasking allows different programs to run at almost the same time.
For example, you can print a letter while formatting a new disk.

The command really runs tasks in alternation instead of in parallel
(that’s why the word almost). This is something like the digital readout
on a clock radio. The numerals on a clock light up one after another,
not all at once. The rapid rate at which they change fools the eye into
thinking the numbers are lit simultaneously.

The NewCLI command makes it possible to add a running task. After
entering the command, another CL.I window appears named after the
current task (e.g., NewCLI task 2). The Amiga can have more than
one CLI window open at a time.

However, work can only be done in one window at a time. You can, for
example, enter Format Drive df0: Name Empty in the original
CLI window, then click on the new window and enter Dir df1l: to
see the contents of the disk in the external drive.

There is a disadvantage to multitasking: Each additional task increases
the risk of errors.

See Chapter 5 for more information about multitasking.

Finally, a hint about the parameters allowed in the NewCLI command.
First, NewCLI can open a window in the size and title specified by the
user. The following command creates a window named Amiga with a
width of 250 pixels and height of 100 pixels, with the upper left comer
of the window starting at X-coordinate 50 and Y-coordinate 70:

newcli con:50/70/250/100/Amiga

3

ABAcCus

FROM

2.2 CLI SYSTEM COMMANDS

This option isn’t used very often for direct output because CII
windows don’t have close gadgets or some other window gadgets. It
works best when using the command in conjunction with a starup
sequence.

If the size input is missing, the CLI creates a window the full wiith
and half the height of the screen.

With the addition of the FROM argument and the name of a script fle,
the NewCLI command can automatically call a new CLI and execut a
script file. If the script file is in a drawer the complete pathname must
be specified. An example:

newcli from coples

In this example the script file named Copies executes, before you an
work with the new CLI.

Workbench 1.3 implementation:

Resident
commands
supported

Every time the NewCLT command is called it executes a script fle
named CLI-Startup, which is in s directory on the Workbench dik.
The only command contained in this file is the Prompt command,
which creates the DOS prompt for the new CLI.

The NewCLI command has become obsolete. In the ¢ directory on tie
new Workbench disk there is a new command called NewShell. Ttis
command creates a window port to DOS that has some advantages ower
the CLI.

Many of these additions can only be used when the shell segmentis
resident in Amiga RAM before calling the NewShell command. The
command reads:

resident CLI l:Shell-Seg SYSTEM pure

This command is automatically executed when the computer is fist
turned on so that you don’t have to bother with it. The Shell windw
has the following qualities:

DOS can load most of the CLT commands into working memory andis
called Resident. These commands are then ready for use by the user. It
is covered in detail in the handling of the new CLI commands(n
Chapter 3. Calling these commands is only possible through te
Shell.In atypical CLI window such a command is loaded from tie
disk.

59

2. Tue CLI CoOMMANDS

Command
synonyms
allowed

60

AMIGADOS INSIDE AND OUT

It’s often a good idea to give your CLT commands shorter names using
Rename. There are disadvantages to this. Rename the Fault com-
mand, which is found in the ¢ directory, to FT (rename c: fault
as c:ft). The Fault command can be used to view the text of an
error message. For example, if £t 103 is entered, Fault 103:
insufficient free store is returned.

Try to erase your CLI command directory using Delete c. This can’t
be done because the directory is not empty. Instead of the error message
Not Deleted—directory not empty, the message Not
Deleted —Error code 216 appears. DOS also makes use of the
CLI commands.

NewShell allows you to call any command by another name. The
syntax for this reads:

alias Newname originalname

Newname stands for any character string without spaces that can be
used to call that command. originalname is the name of the com-
mand that should be executed by using the new name. When the
Shell finds a name at the beginning of a line for which such a
relationship exists, this name is replaced by the related command. All
other input remains unchanged. For example:

alias d dir

The Dir command can be called by entering a d followed by a
<Return>, The relationship between the shortened version and the
normal command is not stored on disk but in a table that is controlled
from the Shell.

The description of the original command is not reduced to a single
word. You can build your own command using Alias if you use the
same options with a command all of the time:

alias s—-up run ed s:startup-sequence

Now you can load the startup sequence into ED for editing by entering
s-up.

Unfortunately the relationships are lost when the computer is turned
off. For this reason a script file is put together so that any number of
alias relationships can automatically be established. This file is
found in directory s of the Workbench disk and is called CLI -
Startup. All entered relationships are valid in each Shell.

The relationship alias newclinewcon:0/10/640/100/
AmigaShell is found in this file. A window with the title Amiga-
Shell is nothing other than a Shell that directs its input and output
to the new device NewCon :. This device is responsible for you being

ABACUS

Output of
current path

Direct
calling of
script files

2.2 CLI SysteM CoOMMANDS

able to edit the lines in the Shell, The NewCon device is described in
Chapter 4.

A list of the current relationships can be obtained by entering just the
word alias.

In the new Shell, the prompt represents the actual directory path.
This informs at which branch of the directory tree you stand. The
current path can be read by entering CD. Making your own prompt is
discussed under the description of the Prompt command.

Usually only object programs can be started directly from the CLI. For
example, if you try to start a script file by entering its name, the error
message Unable to load xxx: file is not an object
modu le (xxx stands for the filename) appears. Script files can only be
started using the Execute command.

Script flags allow access to a script file without the Execute com-
mand. DOS recognizes the flag, knows it’s dealing with a script file,
and automatically calls Execute. The command for setting the flags
reads: protect filename +s (see Protect).

When script files are started in this manner, instead of the script file
CLI-Startup, a script file with the name Shell-Startup is
called from NewShell. This file is found in the s directory of the
Workbench disk.

Further information on the NewShell command can be found in
Chapter 3.

2.2.2

Syntax:

Note:

EndCLI

endcli

This command closes the current CLT window task started from the
Workbench or with NewCLI. A second CLI cannot be closed from the
first CLT window. If a CLI which was started by using Run ends, the
CLI ends before the process is ended; the window remains open for
output from the currently running task. When the last task ends; the
window closes.

If the Workbench is not already loaded in and you enter EndCLI, the
Workbench screen appears without icons or a menu bar (you won’t have
access to the Workbench). Enter the LoadWB command, then enter
EndCLI to exit to the Workbench.

61

2. Tue CLI COMMANDS

AMIGADOS INSIDE AND OUT

Workbench 1.3 implementation:

There is no such command as EndShell; Shell can be ended using
EndCLI. Some versions of the Shell-Startup script file contain
statement alias endshell endcli so that Shell will accept the
EndShell command.

2.2.3

Syntax:

Run

run PROGRAM_NAME

This command executes a program or CLI command while allowing
access to a program running in the background and the current CLI.
Any output from the Run command appears in the CLI window which
started the task. The example below prints three files name letterl,
letter?2 and letter3 and then displays the RAM disk directory:

run c/join Letterl Letter2 Letter3 to prt:
dir ram:

The Join command sends the multiple letters to the printer. The Run
command starts the first task and immediately frees up the computer to
display the RAM disk contents.

There is an alternative to using Join to print the three letters. The
CLT accepts the plus sign (+) character followed by the <Return> key
as a specifier for multiple commands. The following example performs
the same task as the example listed above:

run type Letterl to prt: +
type Letter2 to prt: +
type Letter3 to prt:

The entire command group executes as a background process as soon as
you press the <Return> key following the last line (the line without
£‘+H).

Workbench 1.3 implementation:

62

It should be possible to leave the Shell used to start a task by using
EndCLI, but also without closing the window eventually used for
output.

The following command creates a background process that writes the
entire contents of the disk in drive df0: to a file named List:

run >List dir df0: opt a

i
%

H

ABACUS

2.2 CLI SYsTeM COMMANDS

It should be theoretically possible to leave the Shell using EndCLI
and close the window while the Dir command continues to work. It
doesn’t work that way; the device receives an EOF (end of file) con-
mand character. The number of the task (e.g., CLI [2]) is given to e
device.

Our sample file displays the task number instead of the disk directoryif
the command Type List is used.

2.2.4

Syntax:

PROCESS

TCB

Status

status PROCESS,FULL/S,TCB/S,CLI=ALL/S

This command displays all the information available about the CLI
tasks running at that particular time. If you enter Status withot
parameters, or if you enter Status all, the CLI displays the nams
of the individual tasks. The following example is a responseto
Status all:

Task 1: Loaded as command: status
Task 2: Loaded as command: beckertext

In this case because the BeckerText program was started from the CLI
using Run, it is assigned task number two.

The PROCESS argument specifies the correct task number for additional
information about the task. Entering Status 2 would only show te
second line of the above output.

The TCB argument produces more information about the individual
tasks. Entering Status tcb for the above data would return te
following:

Task 1: stk 1600, gv 150, pri O
Task 2: stk 3200, gv 150, pri ©

The information following the task number has the following meaning:
stk Processor stack size of this task

gv Global vector table width

pri Specified task’s priority (values range from -128 to +127)

See Chapters 5 and 6 for more information about the Global Vecur
Table width and task priority.

3

FULL

The FULL argument displays complete information about tasks.
Status full displays the following for the above example:

Task 1: stk 1600, gv 150, pri 0 Loaded as command: status
Task 2: stk 3200, gv 150, pri 0 Loaded as command: textpro

Workbench 1.3 implementation:

Syntax:

PROCESS,FULL/S,TCB/S,CLI=ALL/S,COM=COMMAND/K

The 1.3 status command gives negative priorities correctly. In addi-
tion, the new Status includes the COM=COMMAND/K argument. This
argument helps the user determine if a specific program exists in the
current task. The user must enter Status Com and the name of the
task. The following example searches for a task named TextPro and
displays the corresponding process number:

status com textpro

No other output occurs. If the process doesn’t exist, the Amiga returns
an error code of 5. This argument is especially helpful in script files for
seeing if a background task is running,

2.2.5

Syntax:

ChangeTaskPri

changetaskpri PRI/A

This command changes the current CLT task’s priority. Each task in the
Amiga has a given priority. This value can range from -128 to +127.
The following example sets the priority of the current task to 5:

changetaskpri 5

Entering Status full after the above ChangeTaskPri command
displays the following:

Task 1: stk 1600, gv 150, pri 5 Loaded as command: status
Task 2: stk 3200, gv 150, pri 0 Loaded as command: textpro

If the input is out of the allowed range, the following appears:

Priority out of range (-128 to +127)

Workbench 1.3 implementation:

Syntax:

64

changetaskpri PRI/A,PROCESS/K

The PROCESS /K argument allows the user to change the priority of
any process. You must enter the process number following the

SADACLY

2.2 CLI System COMMANIS

PROCESS argument. The following example changes process numberi
to a priority of -5:

changetaskpri Pri -5 Process 4

This option is very useful in case you have started a printing operation
as a background process and want to slow down this task so your other
tasks are done more quickly. ChangeTaskPri lets you lower the
priority of the printing task, freeing up time for other tasks to execute,

2.2.6

Syntax:

PROCESS
C,D,E,F

ALL

Break

break PROCESS/A.ALL/S,C/S,D/S,E/S,F/S

This command halts execution of a DOS command from any CLI win-
dow. For example, if one window contains the Dir opt a command,
the complete output of this command can be stopped by entering
Break 1 from a second window.

You can achieve the same result by activating the first window and
pressing the <Ctrl> and <C> keys. But there is another use for this

The PROCESSS argument tells the system which task to interrupt.

The Break command without arguments defaults to <Ctrl><C>. The
C,D,E, F arguments allow you to change the control character to
<Ctrl><C>, <Ctrl><Ds, <Ctrl><E> or <Ctrl><F>. The following
example transmits a <Ctrl><D> to task number 3:

break 3 d

A multiple ﬁlg operation will stop at the beginning of the next file
whf:n Break is sent. The operating system’s response to <Ctrl><C>

The ALL argument transmits all four <Ctrl> codes simultaneously. The
following example sends all the <Ctrls codes to task 3:

break 3 all

65

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

2.2.7

Syntax:

66

Path

path ,,,+,,,,,ADD/S,SHOW/S, RESET/S

This command displays the current directory and disk path. If the Path
command is entered without parameters or is followed by Show, a disk
path appears on the screen. Here’s an example of a directory that might
be found in the RAM disk:

Current directory
RAM: c

A500 WB 1.2 D:System
C:

This list shows the order and directories used for searching a file. If the
name of a program is entered (e.g., 2 CLI command), DOS first
searches the current directory for the file. The current directory can be
specified using the CD command.

If DOS doesn’t find the file in the current directory, it searches RAM: ¢
and the System drawer on the Workbench disk. If the file is not in any
of these places, DOS finally looks in a virtual (i.e., it exists only
within the computer) device named c :. This pseudo device ensures that
the CLI command searches for the correct directory. See the description
of the Assign command for more information about virtual device
Cc:.

The Path command allows the user to add or remove paths. For
example, if you use the calculator in the Utilities drawer of the
Workbench disk often, the following command to load the program is
entered:

Utilities/Calculator.

However, if you enter the command Path sys:Utilities add
beforehand, the path list looks like this:

AS500 WB 1.2 D:Utilities
Now DOS automatically looks in the Utilities drawer.
The Path command is especially useful when used in conjunction with

the RAM disk. Because additional paths in the list are always searched
before the c: device, several DOS commands can be placed in the

R

ABACUS

ADD

RESET

2.2 CLI SYSTEM COMMANDS

RAM disk. This saves the floppy disk user quite a bit of work because
the operating system looks in the RAM disk first for the desired com-
mand. Next it calls for the Workbench disk to be inserted because the
command was not found (see Chapter 3 for more information on this
subject).

The ADD argument must appear at the end of the list to add up to ten
new path specifications.

The RESET argument removes all of the paths up to a maximum of 10
paths. All paths except the current directory and the c: device are
deleted.

Workbench 1.3 implementation:

The Path command’s function remains unchanged but the search order
is different in the 1.3 version. When you omit a specific path for a
command, DOS first searches the resident commands. If it cannot find
the command in residence, the search operation continues as described
above.

2.2.8

Syntax:

Assign

assign NAME,DIR,LIST/S

Before we describe this command in detail, look at the Amiga’s
response when you enter Assign LIST:

Volumes:
RAM disk [Mounted]
A500 WB 1.2 D [Mounted]

Directories:

S A500 WB 1.2 D:s

L AS500 WB 1.2 D:1

(o] A500 WB 1.2 D:c
FONTS AS500 WB 1.2 D:fonts
DEVS AS500 WB 1.2 D:devs
LIBS AS00 WB 1.2 D:libs
SYS ASQ00 WB 1.2 D:
Devices:

DFO DF1 PRT PAR SER

RAW CON RAM

Volumes lists the names of the disks currently recognized by DOS.
The word [Mounted] means that the disk is currently in the drive
(this doesn’t literally apply to the RAM disk).

67

I

2. THE CLI COMMANDS

NAME

DIR

LIST

AMIGADOS INSIDE AND OUT

Look at the entries beneath the Directories category. The left
margin lists the known devices. You read some information about the
¢ : virtual device under the description of the Path command. Each
virtual device is a real path related to a currently existing directory. A
device name can also be labeled for the path on the right. The ¢ : device
is related to the ¢ : drawer on the Workbench disk. The ¢ : drawer con-
tains all the CLI commands. The device name doesn’t have to be the
same name as the drawer name in some cases. A program in the device
named fonts: can be accessed from a drawer named
Character_sets:. Naturally, the Assign command allows these
assignments to be changed.

assign NAME,DIR, LIST/S

The NAME argument represents a device name (DOS recognizes this
from the ending colon).

The DIR argument represents a complete pathname. Entries under DIR
can be assigned to this path. If this argument is omitted, the command
deletes the specified device from the list.

The LIST argument changes the display format of the current list. If no
changes are desired, the LIST argument may be omitted from the
Assign command.

The end of the output lists the devices that can be called from the CLI.
These devices are described in detail in Chapter 3. Devices are separated
from one another in the list by spaces. Device names more than three
characters in length are not yet implemented.

Workbench 1.3 implementation:

68

The 1.3 version of the Assign command allows you to see if a certain
device exists. The command must include the device name and the
LIST argument. The following entry is given if the device exists and
the error status is set to zero. The following occurs when you use
Assign in conjunction with the fonts : directory:

Input: assign fonts: list

Output: Volumes:
Directories:
fonts Volume: AS500 WB 1.2D
Devices:

The fonts: device appears under the Directories: heading. It is
treated as a virtual device.

The Assign command returns error code § if the device is not found.
This error status can be used in a script file (see Chapter S for more
information about script files). The following script file tests for the

ABACUS

2.2 CLI SYSTEM COMMANDS

existence of the Extras disk. The user is asked to insert the Extras disk
if it isn’t in the drive:

assign >nil: Extras: list

if warn

echo "Please insert the Extras disk in a disk drive®
endif

The >nil command directs all output to the Nil: device. This device
acts as a trash can—the redirected data doesn’t come out. Unwanted
output can easily be suppressed this way. Error status can be read using
the If Warn command. The script file needs the I£ Warn command if
the Extras disk isn’t found (warn = 5) and displays the specified text.

2.2.9

Syntax:

DRIVE

BUFFERS

AddBuffers

addbuffers DRIVE/A,BUFFERS/A

This command assigns a large buffer to a specified disk drive. When
working in the CLI, sometimes a command can be loaded from the
drive before it is used the first time, and then the command remains in
memory for subsequent command calls. The reason for this is found i
the disk drive buffer memory. The operating system loads all data into
the buffer before it can be used elsewhere. If a program is small enough
to fit in the buffer, it doesn’t need to be recalled from the disk or hard
disk again. This speeds up execution time.

The DRIVE argument is the drive specifier to which the buffer should
be assigned.

The BUFFERS argument specifies the number of blocks allocated for
the additional buffer (1 block = 512 bytes).

The following example assigns 11 blocks of RAM to drive df0:
addbuffers 4df0: 11

Drive df0 is given an additional 11 blocks for working memory (1
block = 512 bytes). Through this addition one of the 160 tracks of a
disk can be loaded into memory.

The AddBuffers command has a small disadvantage: The buffer
memory allocated to disk memory is taken from system memory. 544
bytes of memory are required per block of memory. The additional 32
bytes are used for internal memory management. It is clear that the data
must eventually be stored in the system memory. There is no clear
reason why reserved buffer memory cannot be released again (this is
only possible by restarting the system),

69

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

2.2.10

Syntax:

Why

why

This command displays a response from the Amiga describing the
reason a command could not be executed. In most cases the CLI can be
asked Why the function did not work.

For example, you would like to read the startup sequence. You enter:
type s/startup-sequenze

The computer responds:

Can't open s/startup-sequenze

You enter:

why

The computer responds:

Last command failed because Error code 205

A glance in the Appendix of this book or entering the command

Fault 205 explains the error: Object not found. We purposely
misspelled startup-sequence above.

ABACUS

2.2 CLI SYsTeEM COMMANDS

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

2.2.11

Syntax:

70

Fault

fault rerrrrres

This command converts error numbers into descriptive text. Only some
errors have texts. If a specific text doesn’t exist, the word Exrror
appears, followed by the error number. Two examples:

Input: fault 10
Output: Fault 10: Error 10

Input: fault 120
Qutput: Fault 120: argument line invalid or too long

2.2.12

Syntax:

TIME

DATE

TO=VER

Date

TIME, DATE, TO=VER/K

This command sets and reads the current time and date on the Amiga,
independent of Preferences.

The TIME argument represents the clock time in HH:MM:SS format
(H = hours, M = minutes, S = seconds) or just HH:MM format.

The DATE argument must have the format DD-MMM-YY (D = day, M
= month, Y = year). If the old date is less than a week old, you can
enter the day of the week itself instead of the date format. Even if the
old date is within a day of the present date, you can enter Yesterday.
Either case installs the correct date.

The TO=VER argument directs the date setting to a file. The following
example sends the current date to the file DOUG:

date to DOUG

Entering Dat e without parameters displays the current day of the week,
date and time:

Wednesday 21-Oct-88 10:17:48

The calendar begins at January 2, 1978. The first of January is shown
as unset. Time periods before that time are invalid.

Workbench 1.3 implementation:

The new Date command now accepts one digit date input as well as
two digit input. For example, in addition to the input date 01-Jun-88,
you can also enter 1-Jun-88.

71

2. Tae CLI COMMANDS

AMIGADOS INSIDE AND OUT

2.2.13

Syntax:

OPT LOAD

OPT SAVE

SetClock

setclock cpt load|save

This command places the time and date set by Date into the Amiga
battery-powered realtime clock (this is an option for Amigas). The real-
time clock and the data entered in Date are independent of one another.

The OPT LOAD argument transfers the realtime clock date and time to
the system.

The OPT SAVE argument transfers the system date and time to the
realtime clock.

In most cases the command is used in the startup sequence of the boot
disk to set the time. The command sequence SetClock >nil: Opt
Load can be found on the Workbench disk. The command sends a
message to the nil: device. This virtual device ensures that the output
does not appear on the screen.

If you enter SetClock without parameters and no realtime clock
exists, the computer replies:

Internal clock not functioning
You will receive this message if you don’t have a realtime clock in

your Amiga. The entire procedure takes about six seconds to load. The
command can also be erased from the startup sequence.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

ABACUS

22 CLI SystTEM COMMANDS

prompt "What do you want?”

If you enter Prompt without any parameters, the prompt defaults to a
greater-than character. If you want the number of the respective CLI
task displayed, the combination ¥n must be entered. Example:

Input: prompt "I am number %n !"
Output: I am number 1 !

The old prompt can be restored by entering:

prompt %n>

Workbench 1.3 implementation:

The new Prompt command allows you to display the current drive and
directory path as part of the prompt text. In addition to the command
string %n, which shows the number of the actual CLI task, the
command characters %s lets you display the last position of the CD
command. For example:

prompt "%n.%s> "
The new prompt could look like the following:
3.Workbench 1.3:System>

You are in the third CLI task. The actual directory is the System:
directory of the Workbench disk.

2.2.14

Syntax:

72

Prompt

prompt TEXT

This command changes the appearance of the DOS prompt. When the
prompt appears, the computer is ready to receive input., The Amiga
default prompt is the CLI task number followed by a greater-than char-
acter (1>). This can confuse the new user.

The Prompt command lets you change the prompt display. If the text
contains spaces, it should be placed in quotation marks. Example:

2.2.15

Syntax:

Stack

stack SIZE

This command specifies the amount of memory allocated for the stack.
Each CLI task places DOS commands in a special memory location
accessible from a machine language stack. Normally the size of the
location is 4000 bytes per CLI. The amount of stack memory can be
specified from 1600 bytes on up. However, if a large amount of mem-
ory is needed, the memory given to the CLI could be overwritten and a
system crash could occur. The Dir command is especially susceptible
to crashing. Try this on the Workbench disk when there is nothing
important in working memory (this will crash the computer):

stack 1600
dir opt a

73

2. THE CLI CoMMANDS AMIGADOS INSIDE AND OUT

The Sort command is also fussy about stack memory. This depends
on the starting point of the data to be sorted. Unfortunately, there are no
given values to avoid. Only trial and error help here.

Another interesting fact is that a new task always receives as much
memory allocation as the CLI from which it was started. Remember
this, or else memory can be used up very quickly.

If you are uncertain about the amount of memory available, use the
Status command without any parameters.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

2.2.16 BindDrivers

Syntax: binddrivers

This command integrates the device drivers (hard disk, plotter, etc.)
found in the Expansion drawer into the system. You’ll find this
command used primarily in the startup sequence of a boot disk. You
must have the driver to operate the hardware. If you don’t need the
drivers, then you can delete this command from the startup sequence,
and the Expansion drawer from the Workbench. By doing this the
system starting time shortens by a couple of seconds.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

"7 Mount
“RVICE/A
K % " ~mand can add new devices to AmigaDOS. The basic configura-
N ~iga recognizes the following devices:
Al disk drive
£r
«": .allel port
erial port
Raw: window
72

ABACUS

Disk drives:

2.2 CLI SYSTEM COMMAIDS

con: Con: window
ram: RAM disk

These devices can be addressed immediately. New devices (e.g., tard
disk partitions) can be installed using the Mount command. Mount
waits for the name of the new device as a parameter. Information alout
this device can be found in the text file MountList, contained inthe
devs directory on the Workbench disk.

Here’s some sample information about the 5-1/4" floppy disk dive
device (installed as df2: on some systems);
df2: Device trackdisk.device
Flags = 1
Surfaces = 2
BlocksPerTrack = 11
Reserved = 2
PreAlloc = 11
Interleave = 0
LowCyl = 0
HighCyl = 39
Buffers = 5
BufMemType = 3
#

Any device can be entered in the MountList. Each entry must bgin
with the device name (in this case, df2:) and must end with a number
sign (#). The data between these strings specifies the device’s charager-
istics. Mount accepts the following keywords:

Keyword Function

Device Name of the device driver

Unit Device number (e.g., 0 for df0:)
FileSystem Label of aspecial FileSystem
Priority Task priority (mostly 10)

Flags Parameter for Open device (usually 0)
Surfaces Number of sides of drive (for disks: 2)
BlocksPerTrack Number of blocks per track
Reserved Number of boot blocks (usually 2)
PreAlloc (no function)

InterLeave Device-specific (usually 0)

LowCyl Number of small tracks

HighCyl Number of large tracks

Buffers Size of buffer memory in blocks
BufMemType Type of memory:

0,1 = Chip or Fast RAM
2,3 = Only Chip RAM
4,5 = Only Fast RAM
Mount 1 = Device connected
-1 = Device connected on first access

]

Other
devices:

Workbench 1.3 implementation:

Syntax:

aux:

pipe:

rad:

! nawcon:

76

. mseeru UVAUE AND UUT

Keyword Function

Handler Path description of the device driver
Stack Size of the processar stacks for the task
Mount See above

DEVICE/A, FROM/K

The MountList can receive any name that follows the From argu-
ment:

mount df2: FROM devs:devicelist 1

The Mount command searches in the devs directory for the file
MountList if you omit the FROM argument.

Workbench 1.3 allows you to install new devices, A few of these new

devices are briefly described here (see Chapter 4 for detailed informa-
tion).

A serial port connection that doesn’t store the data in a buffer. The
important entries are already in the MountList, o the connection can
be installed using the command sequence mount aux:.

The device enables different tasks to exchange information. For exam-
ple, if you want to send information from one CLI to another, this
sequence allows you to make the exchange easily:

Input to 1st CLI: echo "Hello CLI 2. How are you?" to pipe:

This information can be read in the second CLI from the pipe:

Input to 2nd CLI:

type pipe:
Output:

Hello CLI 2. How are you?
The statement for installing the pipe: is already in the Mount List.

A RAM disk. Unlike the device ram:, data remains in memory even
after the computer is reset. Not even a Guru Meditation can reset the
rad: device. Unfortunately, memory management is not dynamic, so
rad: takes up all of its allotted memory even when it is empty. The
capacity of rad: is included in the Mount List.

A new window port that expands on the usual Con window. The
newcon: device manages a 2K buffer for temporary storage of the last
input. The old input can be recalled and edited with the help of the

cursor keys. The newcon: device can be used in conjunction with the
NewCLI command.

vy ——

ABACUS

speak:

2.2 CLI SYSTEM COMMAXDS

Controls Amiga speech output.

The new Mount command reads the keywords described above in adfi-
tion to the following statements:

Keyword Function

MaxTransfer Maximum number of blocks that can be transferred
Mask Address area that can be addressed by the DMA
Handler Path description of the device driver

These statements are only evaluated in conjunction with the new Fat
Filing System.

77

2. THE CLI COMMANDS AMIGADOS INSIDE AND OUT

2.3

Script File Commands

This section contains information about the commands used in conjunc-
tion with script files. Script files (sometimes also called batch files) are
simple text files containing any number of CLI commands, written
using ED or a word processor. The Execute command runs these
commands. Chapter 4 contains detailed explanations and several practi-
cal uses for script files.

2.3.1

Syntax:

78

Execute

execute NAME

This command executes script files. Because script files are text files,
They cannot be directly accessed like programs. If this is attempted, the
computer responds with the Error code 121: file is not an
object module error message.

The Execute command needs the name of the file to be executed. For
example, a script file named printer might contain the following
line:

type Text/Letter to prt:
date

The Execute printer command works the same as if both of the
above lines had been typed in from the CLI:. The script file prints the
letter, followed by the current date and time.

As with most CLI commands, the filename and additional parameters
may be added—these are transferred to the script file. The script file in
this case must have a predetermined variable to which the parameters
can be assigned.

The above script file should serve as an example of this. Instead of
printing out the given text (Text/Letter), a variable can now be
inserted, which can be assigned any name. The variable is declared in
the example below using the .key directive;

.key name
type <name> to prt:
date

AL Ay

U

ABACUS

2.3 ScripT FILE COMMANDS

The printer script file is now called using:
execute printer Text/Letter
There are a few rules about using variables. They are as follows:

1. The .key command, with which the variables are declared, must
always be at the beginning of the script file,

2. If the assignment allows multiple parameters, they must be sepa-
rated by a comma. The .key directive can only be used once,
otherwise the error message Execute: More than oneK
directive is displayed. Example of correct usage:

key dataname, destinationdevice
copy <dataname> to <destinationdevice)

3. Replace the text between the greater-than and less-than characters
with your own contents. There should be nothing about the
variable name in their place, but instead the statement of what
was assigned by the Execute command.

Normally, these three points are all you need to know when working
with variables in conjunction with script files. There are a few addi-
tional functions that should not be overlooked.

In addition to .keys, there are a number of directives beginning with a
period that can be put in a script file:

.def This directive assigns given contents to a variable. This
instruction can emerge anywhere in the text. A use for this
is to give a firm name to a variable in the case that the
Execute command is not given a definite name (default
name). Such a script file can look like the following:

.key datafile,devicename
.def devicename prt:
type <datafile> to <devicename>

When the devicename parameter is omitted, Execute
defaults to the printer.

For this use there is a special but very simple procedure.
The variable name in the greater-than and less-than characters
must be expanded by adding a dollar sign and the text thatis
to take the place of the variable, on the chance that the
Execute command isn’t given any parameters. The above
example would then look like this:

.key datafile,devicename
type datafile to <devicenameS$prt:>

79

AMIGADOS INSIDE AND OUT

In case a filename is entered but not a device name, the
output automatically goes to the printer (prt:).

dol This directive changes the dollar sign ($) placed at the

beginning of a text to any other character. For example:
.dol #
The corresponding line under .de £ would now have to read:
type datafile to <devicename#prt:>

bra This directive has a task similar to .do1. This allows the
less-than character (<) to be replaced by another character.

ket This directive is similar to .bra, except it changes the
greater-than (>) sign.

. A period followed by at least a space allows the user to
insert a2 comment line, BASIC programmers use a REM
statement for this.

dot This directive changes the period preceding each instruction
to another character.

Script files should be used without any other control characters,
otherwise it becomes too confusing.

Workbench 1.3 implementation:

Script files are still called through Execute. By adding the s (Script)
flag it’s now possible to start script files by entering their names. The
Script flag must be set first using the Protect command. The
following sequence sets the flags for a script file named Test_Batch:

protect Test_Batch +s

ABACUS

2.3 ScrieT FILE COMMANDS

echo >prt: "One more beer and I'll go home."

The text must be enclosed in quotation marks if any spaces existin the
text.

The Echo command features an optional parameter of the *n chaacter
combination. This combination forces a linefeed in the text output
echo "Careful*n Stairs!”

The output on the screen looks like this:

Careful
Stairs!

In the rare instance that you wanted to use *n as an actual entry i1 the
text, use the character string **n,

Workbench 1.3 implementation:

2.3.2

Syntax:

80

Echo

echo TEXT

This command makes it possible to direct a character string to any
output device. The default device is the screen:

echo "Hello, Doug!"

You must add a greater-than character and another output device name to
send the output to another device:

Syntax: echo ,NOLINE/S
The NOLINE argument suppresses the linefeed that usually follows
after the output.

2.3.3 Failat

Syntax: failat RClim

This command halts a command sequence if the Amiga reaches a speii-
fied error return code limit. Each CLI command and many other
programs return an error number if an error occurs during execution, In
the CLI most numbers are assigned a related error text so that by usitg
Fault followed by the respective number the explanation can be read.
For example, the number 216 means that you tried to delete a drawer
that still contained entries.

If the error number for a CLI command inside of a script file is greatir
than or equal to ten, the script file stops working and returns control i
the main program (for example, back to the CLI). This error limit ca
be read by using Failat. This is very useful because the limit could
be anywhere. In some cases it’s desirable when a script file reports t
warning (an error number less than 10).

An example: When compiling, the difference between wamings and
errors is most obvious. Warnings can usually be ignored because they
are caused by a poor programming style. If the error limit is set ina
script file of a compiler, the work is stopped as soon as it encounters

81

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

incorrect data. This prevents the calling of other work operations
(assembling, linking).

To set a new error limit in a script file, Failat requires an argument
of the new error number at which the operation should be stopped. This
new limit is valid only while work is being done in the script file.
After that it is automatically reset to 10.

If a new error limit is given directly from the CLI, the limit is also
valid in the script file called from the CLT. If the limit is undefined,
then the error limit returns to 10. If the Failat command does not
emerge in the data file the given error limit remains unchanged.

Each new CLI called automatically supercedes the error limit of the
CLT that it was called from. After it is called the limits can be changed
independent of one another.

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

ABACUS

2.3 SCRIPT FILE COMMANDS

2.3.4

Syntax:

Quit

quit RC

This command exits a script file at any point. The Quit command is
unnecessary at the end of a script file. If you want the script file to tell
you what went wrong, Quit can display the desired error number.
Control returns to the CLI and the following text appears by an error
number greater than or equal to 10:

quit failed returncode xx

The xx represents the error number.

Workbench 1.3 implementation:

82

Version 1.2 and Version 1.3 of this command are identical.

2.3.5

If/Endif

EQ

If/Else/EndIf

’I_‘hese commands execute certain parts of a script file if specific condi-
tions are met. These three commands must be handled as one; Else
and EndIF are only allowed to be used in conjunction with If.

The simplest case only requires If and EndIf:

if exists Text/Letter

type Text/Letter to prt:

endif

echo "Have I printed the letter yet or not 2"

In this example t]?e Type command executes because the data file
Letter really existed in the subdirectory Text. In this case it doesn’t
matter about the rest of the script file directly under the EndIf.

Itcanbe de_termined whether data files are contained in a disk drive or on
the RAM disk. Another set of codes that are allowed to follow the I£:

EQ compares two texts for the same contents:

if "That 1s the text" eq "That is the text™
echo "Yes, the two texts are equal”
endif

Some §nquiries naturally do nothing because the interrogation can also
be 'ommed.. With just the EQ command, the text remains unchanged.
Using EQ in conjunction with batch variables is interesting (see the
description of the Execute command). Two examples:

.key input

if <input> eq Letter

echo "You entered the word 'letter' v
endif

.key input

if <input> eq "

echo "You didn't enter anything !t!v
endif

Here you must differentiate between the variable input, the contents
of input and the text letter.

It is important to note that when comparing text, it does not matter

whether it is in capital letters or not. If letter EQ LETTER returns
the same result.

83

2. THE CLI COMMANDS AMIGADOS INSIDE AND OUT

If Fail

Error

IfWarn

Not

Else

84

Using If Fail determines whether the last command had an error
number greater than or equal to 20. This evaluation is useful when,
before the use of the command, the error limit has been changed from
10 to a larger value than 20. If not, the execution of the script file is
interrupted.

If Error is the same as If Fail. In this case, however, the error
limit stays at 10.

The error limit for If Warn is set at five. It is not necessary to set the
error limit higher than 10 with Failat.

The labels If Warn and Error should not be confused: If If Warn
traps error number 225, for example, this is a fail error instead of a
warning. It recommends that a higher error limit be set with Failat.

If Not is added before any of the above conditions, the opposite of the
declaration is done. For example:

.key text

if not exists <text>

echo "I don't have any such data file"
endif

if exists <text>

echo "Here it goes !"]
type <text> to prt:
endif

The script file needs the name of a text file contained in the variable
text. In the first section it tests to see if the data file doesn’t exist. If

ABACUS

23 ScrIPT FILE COMMANDS

number of interlocking If commands. An Else or EndIf must
always be associated with the last If in a block. The example below
evalpates how many parameters the Execute command is given (a
maximum of three). It becomes easier to see the function of the pro-
gram through the structured indenting of the program:

ket textl,text2,text3

if not <textl> eq ""
1f not <text2> eq "*
if not <text3> eq ™"
echo "All three inputs exist™®

else
echo "The three inputs are missing"
endif
else
echo "The second and third inputs are missing®
endif
else
echo "No input has been made"
endif

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

it does not, the first Echo message appears.

After that, Tf Exists is used again, this time to see if the file
actually exists. If it does, the script file prints it on the printer (this
only works with true text files).

The Else command can easily be built into a script file as an alterna-
tive to the If not statement. The above example looks like the
following when you're done using the E1se command:

key text

if not exists <text>

echo "I don't have that data !™
else

echo "Here it is !"

type <text> to prt:

endif

This example delivers the same result as before, except faster and easier.
Finally, a few comments about the three commands. Each I£/ Else/

EndIf block is allowed to have any number of lines. The block must
end with either an E1se or an EndI£f. A block can also have any

i

2.3.6

Syntax:

Ask

ask PROMPT/A

This comm_anc} has'the computer wait for a response from the user
before continuing with the script file.

The Ask command can either be given without arguments or with text
that displays a question. The computer waits for an answer, either Yes
or No (Y or N), followed by the <Return> key. If something else is
entered, the Ask command waits until a correct answer is given. The
evaluation occurs through error code number five so the command ca

confirm the input. The following example demonstrates the first reac-
tion to different input:

failat 5
ask "Should I stop? (y/n)"
echo “Good, then I'll go further"”

Because the error limit is usually set at 10 for stopping script file exe-

cution, it must be set to five here so that entering Yes would return you
to the CLI.

85

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

This solution hardly satisfies everyone. It would be better for the user if
two different program lines could work at once. What you ¢an do is use
the ITf Warn command from Section 2.3.5. That adds the nuisance of
lowering the error limit to a value smaller than six. Example:

ask "Do you know the ask command ? (y/n)"

if warn

echo "Very good, go on "
else

echo “"Set at six !"
endif

Workbench 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

ABACUS

Workbench 1.3 implementation:

2.3 ScrIPT FILE COMMAIDS

Version 1.2 and Version 1.3 of this command are identical.

2.3.7

Syntax:
Skip

Lab

86

Skip/Lab

skip LAB

The Skip command is the script file equivalent of the BASIC/C goto
command, or assembly language’s jmp instruction.

If a script file encounters a Skip command, the text file is searched for
the Lab (label) command. The file executes at the routine specified by
the label. If you add a name to the Skip command, the script file
jumps to the label of the same name. For example:

ask "Can you go around with Skip and Lab ? (y/n)"
if warn
skip mark
endif
echo "Not too bad"

quit

lab mark
echo "Use only in moderation®

The program text cannot be re-entered with the Skip command. As
with other programming languages that use a jump command, Skip
should be reserved for cases where there is no alternative, since it
detracts from structured programming. In the above example it makes
for a sloppy program because it exits an I f/EndIf construction. That
should be prevented whenever using the Sk ip command. In almost all
cases an I1£/Else/EndIf construction is the best solution.

2.3.8 Wait

Syntax: wait SEC=SECS/S,MIN=MINS/S, UNTIL/K

This command delays script file execution for a specified amountof
time. A typical example of a needed pause is the execution of two taks
that access the same disk drive at the same time (excepting the RAM
disk). If the directory of the disk in drive df0: is listed in one CLI
window using the Dir command, and the List df0: command lsts
the directory of the same disk in another CLI window, the two con-
mands are executed parallel to each other. The net effect is that it tales
longer for the commands than if they had been entered one after he
other. Because both processes must access the disk, each command an
only access a few tracks during execution time. A lot of time mustbe
allotted because the drive head must always be changing its position.

If you wish to load two programs with the startup-sequence, ve
recommend that you wait for the first program to load using the Wait
command. The time needed to wait is entered as the argument. The tine
can be entered in seconds, minutes or in system time format. Wa:t
without any parameters waits one second. Some examples:

wait
wait
wait
wait
wait
wait

5

5 sec

min

5 min

until 14:30

waits
waits
{same
waits
waits
waits

1 second

5 seconds

as 2)

1 minute

5 minutes

until 14:30 (2:30 pm)

You can interrupt the Wait command by pressing <Ctrl> <C>.

In Chapter 3 it shows how Wait can be used to make a CLI alam

clock.
2.3.9 Version
Syntax: version [<library name>] {[version] [revision]

This command returns the version and revision number of the Wor.t-
bench from a device or library. When the Version commandis

§7

2. Tug CLI CumMMANDS

AMIGADOS INSIDE AND OUT

entered without arguments, you receive statements about the Kickstart
and Workbench versions. For example:

Kickstart version 33.180. Workbench version 34.4
Version can have a special library of device names attached:

Input: version trackdisk.device
Output: trackdisk.device version 33.127

It is possible to test the version number. Error code 5 is returned if the
given version number is greater than the one tested. The error status can
be evaluated from within a script file with the help of a If/Else
construction. The following script file calls the Math program if the
fast math library Version 34.44 or less is present. Otherwise it returns
an appropriate message.

version >nil: mathieeedoubbas.library 33.44
if warn
echo "the fast Math library is not there !©
else
run Math
endif

Workbence 1.3 implementation:

Version 1.2 and Version 1.3 of this command are identical.

ABACUS

2.4 THE EDITORS

2.4

ED

Edit

The Editors

The ED and Edit programs are two large (19K each) programsthat
make it possible to edit text files.

ED is a full screen editor. It can load the entire text into the worling
memory of the Amiga and display an entire screen of that file. Withthe
help of the four cursor keys the cursor can be placed at any posiion
inside the window. You can then edit the text at that position. Youcan
scroll the text to see data above and below the screen window. Ifthe
text to be edited has more columns than the ED window shows, the
window scrolls left and right when the cursor moves beyond eiher
margin. Anyone that has worked with AmigaBASIC is at least familiar
with the principle of screen editors.

The Edit program is a line editor. The basic difference from ED isthat
you edit text line-by-line through different commands. You camot
manipulate text within a window, similar to the CLI.

There are many reasons for using two editors. These two editors alow
the user to edit script files or enter source codes for compiled languaes.
In most cases ED is much easier to use, and gives a better overviey of
the text (very important when programming).

Edit needs relatively smaller amounts of memory than ED, becuse
the entire text does not need to be loaded into memory. In cases inwlv-
ing large files that ED cannot load, Edit can help. Edit also letsthe
user open more than one source file at a time, Overall, Edit has nore
flexibility than ED.

It would take an entire book to describe EQit’s capabilities. Only its
basic functions are supplied in this section.

2.4.1

YT N

Reading text with ED

ED is usually accessed through the ED command and a file/path:

ed text/prog
The Text/Prog argument is the pathname of the text file you vant

edited. Two different conditions can exist when invoking ED inthis
way.

89

2. THE CLI COMMANDS

Existing
filename

Nonexistent
filename

BASIC ED
commands

Direct mode

<Esc> mode <Esc><X>

90

AMIGADOS INSIDE AND OUT

This case loads the text file into the working memory. If this is
successful, the ED window appears, displaying all or part of the text file
(depending on the file’s size). If the loading operation is interrupted, the
Amiga displays the message Unable to open window... on the
screen. This error could occur if the filename given is in fact a directory,
or if the file doesn’t contain text characters. These are indicated by the
messages x 1s a directory and cannot be editedorFile
contains binary.

If the file doesn’t exist, an empty ED window appears. When starting
ED, you can specify the SIZE argument, which sets the working
memory size in bytes. The following allocates 60,000 bytes to the
test file in the text directory:

ed text/test size 60000

If the size is missing, ED defaults to a size of 40000 bytes. The size
should be increased if you want to load a larger text file. Now work can
continue with ED. After the size and position of the window has been
set, it is possible to move all over the screen and manipulate data and
even add new text. The <Backspace> and keys function as usual:
<Backspace> erases the character immediately to the left of the cursor,
and erases the character that the cursor is on. The mouse cannot
be used with ED.

There are two different ways to control ED:

1. Direct mode by pressing the <Ctrl> key and another key. The
respective command is executed.

2. In the command line. Pressing the <Esc> key displays an aster-
isk at the bottom left of the screen. As long as the asterisk is
visible, you are in command mode (i.e., you can’t edit the text).
Entering and executing a command, or by pressing <Return>,
can exit this mode.

The end of this book shows a complete listing of the commands that
can be executed from ED. Here we are only presenting the most impor-
tant commands, but they are sufficient in most cases.

<Ctrl><A> Insertline

<Ctrl> Delete line

<Ctrl><G> Displays the last <Esc> command
(important for searching and replacing)

<Cul><Y> Delete from cursor to end

(eXit) Saves text to disk and exits ED. A copy of the
file named ed~backup is placed in subdirectory t of
the disk.

ABACUS

2.4 THE EpiTORS

<Esc><Q> (Quit) Exits ED without saving the text. If you hawe

entered any data, the program will ask for confirmatio
from you before quitting.

<Esc><SA> (SaveAs) Saves the text without exiting ED. If ya
want the text saved under a different name, the name ca
be changed to a new name or an already existing name.

Note: The old contents of a previously existing file are log
forever.

It ig possible to send the data directly to a peripherd
device: <Esc><SA> “prt:” sends the text to the printer.

<Esc><)> (Join) Combines two lines into one. This is very usefu
when a 1§ne has been accidentally separated by the user
by pressing the <Return> key in the middle of a line

The cursor must be placed at the end of the top line.

<Esc><BS> (BlockStart) Marks the beginning of a block of text for
different block operations. The line in which the cursa
currently stands is the top line of the block.

<Esc><BE> (BlockEnd) Marks the end of a block of text for differen
block operations.

<Esc><IB> (InsertBlock) Places a copy of the block marked out by
<BS> and <BE> at the current cursor position.

<Esc><DB> (DeleteBlock) Deletes the block marked by <BS> and
<BE>, The line is removed from the text,

2.4.2

Text handling with Edit

Forget everything that we just talked about regarding ED. Edit works
on a completely different principle:

The working memory buffer of Edit can only hold a few lines of tex
at a time. Under normal circumstances, the user edits these one afte!
another. When editing is complete for the last line of the buffer, Edit
autorpatxcally loads the next line from the data file and writes the previ-
ous lines to a destination file. Edit requires both files (this is a majot
difference from ED),

The user can only edit the lines currently in the buffer. It is also possi-
ble to scroll up a limited number of text lines. If a line has left the
buffer and been written to the destination file, it is no longer accessible
by Edit.

91

2. THE CLI COMMANDS

AMIGADOS INSIDE AND OUT

When the session with Edit ends, the complete contents of the buffer
are saved to the destination file. The rest of the source file must eventu-
ally be saved so that data isn’t lost. You can exit Edit without read or
write operations taking place.

Edit also lets you open and read different data files while editing. Each
new data file is superimposed over the beginning of the original source
data file. When you return to the original file, it reopens and assumes
the original position.

Finally, Edit has another feature: It can read Edit commands from
any properly configured data file as well as from the keyboard.

2.4.3

Syntax:

FROM

TO

WITH

VER

OPTP

92

Parameters of Edit

edit FROM/A,TO,WITH/K,VER/K,OPT/K

The Edit command itself is started with Edit. The arguments are as
follows:

The FROM argument specifies the name of the file to be edited. This
data file must already exist (completely new text cannot be created using
Edit).

The TO argument specifies the name of the destination file to which the
data are written. If this name is missing, Edit creates a work file in
the t subdirectory and places file data in it. When you quit Edit, this
work file receives the complete pathname of the source file as given in
the FROM argument. The original source file is placed in the t subdirec-
tory under the name EDIT~BACKUP until it’s overwritten by further
work with Edit.

The WITH argument loads a file which specifies commands. This file
can give commands just as the user can give commands from the
keyboard.

The VER argument directs Edit’s output to a device other than the
screen. For example, Ver Data_File would put the input into a file
named Data_File. Using Ver con:10/10/300/100/Ver-
Window places the contents of such a file in a window.

The OPT P argument specifies the number of lines allowed in the
buffer. Example: Opt P100 configures the buffer to hold 100 lines (40

lines is the default). This is very practical when more system memory &

is needed.

_-‘

ABACUS

OPTW

OPT PxWy

2.4 THE EDIT(RS

The OPT W argument changes the maximum line length to a vaue
other than 120. Example: Opt W81 sets line length to 81 characters,

The OPT PxWy argument is a combination of OPT P and OPT W. The
x and y arguments are the values for these arguments.

2.4.4

Starting Edit

In most cases, you enter the name of the file to be edited when you sart
Edit. As was explained above, the edited lines are placed in a helpfile
named EDIT-BACKUP.

The Edit prompt (a colon) appears after you invoke Edit, It wits
for user commands, much like the CLI. Because of the line orientatin,
you must search for the next line to edit. Edit automatically numbers
all the lines of the source file internally. Immediately after you sart
Edit, line 1 of the source file is the first line to be edited. Unforu-
nately the contents are not automatically displayed. To reach anotier
line, there are different methods:

a) Entering <N> (Next) places the user at the next line
b) Entering <P> (Previous) places the user at the previous line
c) Entering <M><x> (Move) places the user at line number x

To display the contents of line 1, for example, it is sufficient to ener
<N> followed by <P>. Multiple commands can be entered at once, tut
as in ED, they must be separated by semicolons. Edit does not distn-
guish between lower case and upper case letters.

The <P> and <M> commands let you return to the line of the buffer rot
written to the destination file. As soon as a line with a number greaer
than 40 is reached, many of the previous lines are placed in the destira-
tion file. If the user tries t0 go back to line number 1, for example, he
error message Line number 1 too small appears.

Preceding the <P> and <N> commands with a number executes he
command multiple times. For example, 10N advances Edit 10 lies
in text.

The <F> (Find) command lets you find a specific string within the dita
file. The command must be followed by the search text enclosed by ay
characters. For example;

f ?Key?

Edit searches for the current line number containing the word “Key.’

'3

2. THe CLI COMMANDS

AMIGADOS INSIDE AND OUT

If you omit input following <F>, the command searches for the last
text string searched for. This is very practical when looking for more
text that contains a certain search string. You must advance to the next
line after a successful search using <N>, so that the same line doesn’t
get returned constantly.

2.4.5

94

Editing Text

After finding the designated text, you can make changes to it. These
changes cannot be made directly to the line (as opposed to ED), but
must be made by using certain commands. The important commands in
Edit are:

e(exchange) Substitutes one character string with another. Example:
The line reads: “Edit is difficult to use.”

Input: e/difficult/easy

Result: Edit is easy to use.

or:

Input: e/difficult//

Result: Edit is to use.

a (after) Inserts a given text behind a certain character string.
Example: The line reads “Edit is a program.”

Input: a/a/flexible /

Result: Edit is a flexible program.

b (before) This command inserts a given text before a certain
character string. Example: The line reads “Edit can do
more !”

Input: b/more/much /

Result: Edit can do much more !

d (delete) Deletes the current line. The line number disappears; the

text is not re-numbered. A line can be deleted by enter-
ing the line number in the command line. Entire text
passages can be removed if the start and end line num-
bers are given. For example:

"d 10 100"

Lines 10 to 100 are erased.

A
BACUS 2.4 THE EDITORS
i (insert) Insert.s the following lines preceding the current Ine.
Entering a <Z> in a separate line ends insert mode. The
buffer contents are renumbered starting with the first
newly entered line. For example: The texts read:
20. "The input mode”
21. "makes everything too complicated.”
Line 21 is the current line, and the following input is made:
i
and working reasonably
with Edit are possible.
It should not be thought impossible.
The result looks like this:
20. "The input mode”
21. "and working reasonably"
22. "with Edit are possible."
23, "It should not be thought impossible™
24. "makes everything too complicated.”
2.4.6 Multiple Files
It's possible to open more than one source file from Edit. The cum-
mand for this reads:
from .datafile.
After this commd new li'nes are called only from the data file withthe
name datafile. As with the original source file, input in the rew
file begins with the first line of the text.
Using FROM without parameters returns to the start of the orignal
source file. The program basically leaves all channels open, and maks
how many hqes of each data file have been read already. If after closng
adata file using the command cf .datafile. (CloseFile) the fik is
opened agam_wuh from.datafile, the lines that were already rad
can be called into the buffer one more time.
2.4.7 Command Macros

Edit can receive command macros (program information) from a data
file that contains all of the normal Edit commands. The name of his

95

2. THE CLI COMMANDS AMIGADOS INSIDE AND OuT

file is given either at the start of the program after the addition of the
WITH argument, or the C command can be used when working with
Edit. A macro file can look like the following:

i

kxR kA kkkk ek khkhhkkhkrkbkkhbxkkkkkk
* Program *
* Author *
* Date : *
* Language ol *
* Assembler : Aztec cé68/am-c v3.4 *

e e e e ke e v e e e e e ke ke Ak ke e ek ok e e ke k ko ek ke
4

If this introduction is inserted before the active line in EQit, entering
C followed by the filename between two periods is all that is needed.
Example:

¢ .introduction.

The insertion is not ordered by the C command, which just calls the
file. The I command emerges here, through which the following text,
up until the Z, is inserted before the active line. As soon as the end of
this file is reached, or a line with the Q command occurs, Edit returns
to command level. This does not necessarily have to be the keyboard
again because a command file is also allowed. In such cases a C com-
mand is contained in the command data file.

A macro file can be constructed for any imaginable case. If you know
the situation well, working with Edit can be much faster than ED.

3.
Devices

2.4.8

96

Quitting Edit

Normally, the <W> command exits Edit. The contents of the buffer
and the rest of the source data file are copied to the destination file in
subdirectory t with the name EDIT_BACKUP. If a name for the desti-
nation file wasn’t specified at the beginning of the work with Edit,
the work file in subdirectory t receives the name of the source file.
After that all the channels close and the program ends.

Edit can also be exited using the Stop command (copy procedures are
not executed). This leaves the destination file incomplete. If a destina-
tion file isn’t given at the start of the editing session, no renaming is
done on the work file. The source data file is also unchanged and
remains under the same name,

See the Appendix for complete descriptions of Edit’s commands.

ABACUS

3. DEvICES

3.

Devices

A device is simply a piece of hardware with which the computercan
exchange information. The disk drive is a typical device.

This data exchange between computer and device doesn’t always haie to
go in both directions. A printer only accepts data, while a mouse only
conveys information to the computer.

The description of the Assign command includes alist of devicesthat
can be accessed from the CLI. The standard devices of the Amig: are
listed below:

DFO
RAM
PAR
SER
PRT
CON
RAW

A colon (:) must always follow the device name, so that the CLIcan
tell devices apart from directories or filenames.

This chapter describes the individual device names and what you ca do
with these devices.

99

3. DEVICES

AMIGADOS INSIDE AND OUT

3.1

100

Floppy Disk Devices (df)

vices beginning with the letters df are Amiga floppy disk drives.
intc?tzl of fourg disk %lrives can be cormectfad at one time (glfO:-dB:).
The drive specifier df0: represents the u}temal‘ disk drive on ang
Amiga; dfl: represents the first external dx_sk drive (Amiga 500 %nh
1000) or the second internal disk drive (Amiga 2000); and so on. the
Devices section of the Assign list contains many references to the

letters df.

. L . . figura-
All CLT commands default to drive df0: in the basic Amiga con

tion (with only one disk drive). If you enter a CLI comm;md mt{lout a
disk drive specifier, the CLI automatically accesses drive df0:. The
following command accesses the directory in drive df0:

dir

i i in drive df2: (the second
The following command accesses the directory m drive d 1
external disk drive in some units, the second internal disk drive on the

Amiga 2000):
dir df2:

ipti in Chapter 2 for
See the descriptions of the List ax;d cD comma'nds in
the problems that can occur 1n disk directory handling.

ABACUS

3.2 THeE RAM Disk DEVICE (RAM)

3.2

Note:

AddBuffers

The RAM Disk Device (ram)

The ram: device simulates a disk drive with the Amiga’s workinz
memory. The word RAM is short for Random Access Memory, a typ
of memory that allows free access (both reading and writing). With few
exceptions the RAM disk can be used like any other disk drive. Thz
RAM disk’s biggest advantage over floppy disk drives is high speel
data exchange.

There is a disadvantage to using a RAM disk for storage: The contenss
of the RAM disk are temporary; they vanish when you turn the con-
puter off, or when it crashes. Since the Guru Meditation messag
can occur at any time, important data should be saved from the RAM
disk to a *“real” disk drive from time to time.

Another disadvantage is the memory requirement of the RAM disk. The
memory capacity for the RAM disk is dyramic. The more data yo
store in the RAM disk, the less memory you have available for applici-
tion and user memory. The more system memory you have availabl,
the more data you can store on the RAM disk. The RAM disk doesn't
give useful information about its capacity (it's always 100% ful
according to the disk gauge on the left border of the RAM Disk wir-
dow). This makes sense because the system only supplies the memory
it needs and no more.

You must create a RAM disk before you can work with it. The follov-
ing command opens a RAM disk:

dir ram:

You'll find the command in the startup sequence, so that the RAM dik
is immediately accessible. If the startup sequence installs a RAM disc
and the user didn’t want it present, he’s out of luck—there is ®
DeleteRamDisk command. Section 5.3 explains how to use the
RAM disk to decrease disk swaps when using only one drive.

The following disk commands do pot work with the RAM disk. Chaj-
ter 2 supplies detailed information about each command.

This command produces the error message:
Warning: Insufficient memory for buffers

It would be a waste of memory to assign both a RAM disk and buffer
memory to RAM, if the operating system did let you do this.

101

3. DEVICES

DiskCopy

Format

Relabel

Install

102

AMIGADOS INSIDE AND OUT

The data files or directories of a RAM disk can only_be cgpied one ata
time using the Copy command. Copying the entire disk using the
DiskCopy command is impossible.

The RAM disk doesn’t need to formatted before using it for the first
time. If you click on the RAM DISK icon and select the Initial-
ize item from the Disk menu, the Amiga lets you get as far as ghe
OK to format... requester. If you click on the OK gadget, the Amiga
displays the following requester:

Initialization failed -
not a disk

If you try to format the RAM disk using the CLI Format command,
the CLI displays:

Format failed -
not a disk

You cannot assign another name to the RAM disk. If you try this, the
following message appears:

Attempt to rename disk failed

This command turns normal disks into boot disks. The Amiga can be
started using these disks. The RAM disk cannot be used as a boot disk.

3 oME pamtme me

o R

ABACUS

33 THE PARALLEL DEVICE (PAR)

3.3

The Parallel Device (par)

This device allows the Amiga to access Centronics interfaced hardwze.
The device works through the parailel port on the case of the Amija.
This device must first be connected before access. The par: deviceis
parallel because all eight bits of a byte are transferred at once. It is aso
possible to transfer information one byte after another or bit for bit (e
the next section for a description of serial transfer).

The connection can be used for more than one device. For example,an
analog/digital video converter can be connected, and the video and autio
signals will be converted to a format that can be understood by he
computer. In this case the data from outside is sent to the compuer
through the connection. Other data flow directions are possible. A
typical application for par: is a printer connected to the Amiga. The
actual information runs through the connection to the printer. The
reason for using a printer with a parallel connection is found in he
handling of this device.

The speed at which the transfer of data takes place depends on how fist
the data from the device can be processed. In addition to the eight lires
used for transferring the data, there is an additional line used for haid-
shaking. Over this line the data receiving device (printer) informs he
transmitting device (Amiga) that it is ready to receive new data. This
maintains optimal data transfer speed.

103

3. DEVICES

AMIGADOS INSIDE AND OUT

Send correct
command
bytes

Using .
control lines

Security
reservations

The Serial Device (ser)

The serial device is also known as the RS-232C interface. The connec-
tion point on the Amiga is called the serial port and can be used for a
wide variety of functions (modem, MID], etc.). The serial port transfers
individual bits one after another, and not at the same time like the
par: device. Each data direction also requires one signal. Only the
bottom seven bits of the byte can be transferred. The remaining bit can
be sent as the parity bit (transfer control bit). After that, parity is
chosen before using the connection (even, odd or none). This eighth bit
is automatically set so that either all set bits are always even or all set
bits make an odd number. The receiver must be set at the same parity.
In a few cases, parity can discover transfer errors.

Each transfer is synchronized by one start bit and two stop bits. The
speed at which the single bits are transferred must be identical at both
the sending and receiving devices. This speed is traditionally measured
in Baud (after the French inventor Baudot). One baud is equal to the
transfer rate of about one bit per second.

The RS-232 connection also has handshake problems. There are three
ways to achieve correct data transfer:

This method is usually called xON/xOFF protocol. This method
assumes that the connection is bidirectional. As soon as a device cannot
receive any more data, it sends a special message (xOFF) through its
return line, The sending device stops data transfer until it receives the
xON message from the receiving device. The advantage of this method
is that only three lines are needed, and that's why a three-wire handshake
is frequently used in telecommunications. The operating system
automatically looks in the active program for correct utilization of the
command characters.

This method is similar to the handshake used with the par: device. Tt
requires additional wires (RTS/CTS and DSR/DTR), over which addi-
tional information can be exchanged. A data channel used only for
return messages can be established. The advantage of this method is the
faster transfer speed because the control codes don’t go through the rela-
tively slow data channel,

If the user is 100% certain that the data-receiving device can process the
incoming bytes faster than the sender is sending them, then you can
conceivably do without the handshaking. This method is most useful
when fast transfer of data from one computer to another is desired, with
the least amount of expense (2 lines). As a permanent solution this
method is ineffective because it takes too much time to configure.

ABACUS

3.4 THE SERIAL DEVICE (SiR)

All parameters must be set with Preferences be i i
port. In addition, 5@.8 is a gadget called Buff mMomSw wwaﬁﬂ%mmﬁﬂ
M.ﬂm.a to change the size of the transfer memory for the receiving dita.
is E_Q.Q holds the receiving data in case the receiving program isnot
Bmaw. If it takes too long to read the data and no handshake takes plice,
this buffer can be overwritten. Data that was in the buffer are lost. ‘

Our first try with the serial connection i i
. of the Amiga was disappoint:
Only a fraction of the parameters that the operating system :om%mo %E:%m.

maﬂcmEmBQMhmmmHmsommcaomaa205.3 .
. . mEm
command sequence in the CLI: ring the followng

Copy ser:command to con:10/10/300/100/ocutput

The RS-232 input buffer requires time to fi i
:] ill. The data received fi
Mwnm&m in the Con: window. The remaining data in the ccmmﬁ_mmm"
splayed when a new batch of data is transferred. An end signal camot

be transferred. See Section 5.7 for details ab i
T . . out tr.
Amiga to Amiga using the RS-232 port. ut iransferring data fom

105

3. DEVICES

AMIGADOS INSIDE AND OUT

3.5

106

The Printer Device (prt)

The printer device is intended specifically for output on the printer. If
the prt : device is addressed, it uses the printer driver and selections
made in the Preferences program. By using printer drivers
Commodore has attempted to standardized printer output. In this manner
all programs use the same printer functions and command characters.
‘When new printers become available, only the printer driver and not the
program will have to be re-written. Different printers require different
drivers because different printers use different codes for activating the
same function. Despite the many printer drivers on the Workbench disk,
there are always difficulties with a few printers.

We believe that these methods are easy to usé with completed printer
drivers. However, it would be much better if there were a
preferences program that made it possible to put together custom
drivers for any available printer.

ABACUS

3.6 Tue ConsoLE DEVICE (CoN)

3.6

Example 1:

Example 2:

The Console Device (con)

The con: device refers to both the ke; i i

[yboard and monitor of the Ami

(1.e._, the consale).' Because the keyboard and monitor screen of tﬁ:

glr;nggl :e dr;oyénale?ﬁlg and outnllaut devices, they can be addressed like
vice. Both input and output can take place i i

The con: device is accessed as follows: place in ey windov

con:X/Y/WIDTH/HEIGHT/NAME

The arguments following con: have the following meaning:

X/Y Coordinates of upper left screen corner
WIDTH Screen width in pixels

HEIGHT Screen height in pixels

NAME Window’s name

dir >con:10/10/300/100/Testwindow

The directory output appears in a window with the gi i i
iven dime;
As soon as the output ends, the window disappears a gg X nSions.

copy con:10/10/300/75/input con:10/100/300/75/output

This displays two con: windows on the screen at th i

] t on: win e same time. Th

;l?rg:stiegtetﬁed <1§ the mpll:t window appears in the output window afte:
ng the <Retum> key. Pressin

pressing the <Retum> y g <Ctrl><Backslashs (<Cttl><b)

107

3. DEVICES

AMIGADOS INSIDE AND OuUT

108

The Raw Device (raw)

This device is closely associated with the con: device. At first glance
it looks exactly the same. The first difference between the two is
established when entering input. The raw: device doesn’t display any
characters. The following example is a good demonstration of the
function:

copy raw:10/10/300/75/input con:10/100/300/75/output

Enter any characters in the top raw: window. All of the characters are
transferred to the con: window without waiting for the <Return> key
to be pressed. If it is pressed, the cursor appears at the beginning of the
line.

Another nice feature of raw: is that control characters for cursor
movement, <Delete> and <Backspace> can be transferred. The receiving
device (con:) removes these characters when executing them. In our
example only the cursor keys function as usual. Pressing <Cul><C>
ends the entire process.

If the output doesn’t function, there is a possibility that input was first
entered in the bottom window. As in the CLT window the output can
be suppressed by other data. In this case the <Return> key should be
pressed in the bottom window.

W B Ao 20 A

4,
Workbench 1.3

ABACUS

4. WORKBENCH 1.3

4.

RAD:

Workbench 1.3

The Amiga developers have prepared Version 1.3 of the Workbench ad
Kickstart, featuring many added improvements. A few of the improw-
ments:

. New and improved CLI commands
. A comfortable Sshell in addition to the CLI
. CLI commands can be loaded and remain resident commands

. A FastFile system for disk drives without changing storae
media (hard disks, RAM disk)

. A faster math library

. New device handlers (aux:, speak:, pipe:, newcon:)

. Reset-resistant RAM disk that boots with Kickstart 1.3

J Boot possibilities from special devices (Kickstart 1.3 only)

Much of this list functions with Kickstart 1.2. This is good news esp:-
cially for Amiga 500 and Amiga 2000 users, because these computes
have Kickstart resident in ROM (Read Only Memory).

Workbench 1.3 in conjunction with Kickstart 1.2 can boot from special
devices. The new RAM disk rad: belongs to these devices from whicth
the Amiga can be booted in seconds using Kickstart 1.3. Kickstart 12
users can only boot from drive df0: (the internal disk drive). Theres
greater value in the compatibility of the old Workbench and Kickstat
versions. If you switch from 1.2 to 1.3 there could be problems wih
the existing software. You should go back to the old Workbench if ya
encounter difficulties (for example, we had problems with the debuggir
db of the Aztec compiler).

Now we’ll go on and describe the new functions.

11

4. WORKBENCH 1.3

AMIGADOS INSIDE AND OUT

4.1

New CLI commands in
Workbench 1.3

Some new, very useful commands exist in the ¢ directory on the
Workbench 1.3 disk. We want to examine these new commands more

closely.

4.1.1

Syntax:

Avail

avail

This command displays the amount and types of memory available. The
Workbench screen title bar displays the amount of free working mem-
ory. Avail displays much more, as the following example illustrates:

Type Available In-Use Maximum Largest
chip 77472 445760 523232 42712
fast 226200 290688 516888 219008
total 303672 736448 1040120 219008

Descriptions for the chip memory, fast memory (only present in mem-
ory expansions) and for the entire memory region (chip memory+ fast
memory) appear in each column. The amount of memory not in use is
displayed under Available and the size of the memory being used is
shown under In-Use, Both values add up to the value found under
Maximum,

A program can be loaded into small memory sections but these memory
sections must be the smallest allowable size. When a program won’t
load anymore even though there is still enough memory, there is a good
possibility that the program segments are larger than the largest
segment of available memory.

ABACUS

4.1 New CLI cOMMANDS OF WORKBENCH 1.3

The user enters ££ -0 to enable FastFon i

f ts (this comm
usually be found in the startup sequence of a boot disk). The foalrllgwfnan
message appears on the screen: 8

FastFonts V1.1 COpyI ight_l 987 by C.Heath of Microsmiths
» Inc

The message can be suppressed by sending it to the nil: device wih:
££f >nil: -0.

The ~N argument can be entered if the normal output mode is needzd.

a ar lthout t-he Turnln
on

4.1.2

112

FF

This command activates a program named FastFonts, developed.by
Microsmiths®. FastFonts accelerates text output on the Amiga
screen. The output increases in speed by a maximum of 20 percent.

4.1.3

Syntax:

Lock

lock DRIVE/A,ON/S,OFF/S,PASSKEY

This command write protects an iti i i
. d y partitions of a hard disk drive. Th
lf)rard disk partitions must function under FastFilingSystem (FFS§
om Workbencl} 13.A Logked partition behaves exactly like a dsk
on which the write protect clip is in the write protect position.

The Lock command can also secure the wri iti
te protect condition using a
ga‘ssword. You can then only remove the write protection when y%)u
dh‘i‘-v ths_: password. The fol}owing command sequence protects dnve
: until you unlock the drive using the password beethoven:

lock dhl: on beethoven

‘/Olurﬂe XXX is write pro tected XXX tepteseﬂ ‘he name Of
(‘s

The following command restores write acce artiti
S5
by the above Lock command: to the partition proteced

lock dhl: off beethoven

113

1.3 AMIGADOS INSIDE AND OUT
4. WORKBENCH 1.

4.1.4 NewShell

Syntax: newshell WINDOW, FROM
This command allows you t0o open another Shell winfio;v for I;OS
command entry. The NewCLI command also performs this function.

A Shell has the following advantages Over the CLI:

i i i i keys. The cursor
. t line can be edited by using the cursor
Z:: tl::apglaced anywhere on the input line by using the <Cursor

left> and <Cursor right> keys. F

. The Shell uses the newcon: devi‘ce for input an?d?:tr;::;;
This new window interface is responsible for many tc_> (he new
shell features. The and <Backspace> keys fu on
usual. Additional text is entered from the current cximorcgo[s thé
When the <Return> key is pressed, the Shell accep

entered line.
The following additional key combinations are evaluated:

Places the cursor at the beginning of the line (also

A
<Cul><A> <Shift><Cursor left>)

«Cirl><Z> Places the cursor at the end of the line (also <Shift>
<Cursor right>)

<«Cul><K> Erases the text from the cursor to the end of the line

<«Ctrl><U> Erases the text {0 the left of the cursor

<Ctrl><W> Moves the cursor to the next Tab position !

«Ctrl><X> Erases the entire line

es from the newcon : device. Every com-

1 This new feature also com ‘ om
Reca_llmgl mand entered is stored in a 2K buffer: Prgssmg the <f(31ursrcl>;nu§>c om{
previonsty restores the last command. This function is very usefui w

hical error. With a keypress the
ckly correct it with the cursor

entered mand is not executed due to a typograp;
commanas command line re-appears; you can qul

keys.

If you’re looking for a special con:magd thatth ;v:;_s “:tnluea::aeci z fstt\}(‘);tctcl)r:mnfi
, the newcon : device can help. Enter o
?ngz?nd and press <Shift><Cursor up>. The command that starts wi

that letter reappears.

Pressing <Shift><Cursor down> moves you to the end of the buffer.

114 ﬁ

ABACUS

Control
code
handling

Startup
script file

Resident
commands

Shorter
program
names

4.1 NEw CLI cOMMANDS OF WORKBENCH 1.3

When a control code is entered in the Shell (for example: <(Ctrl>
<L>), the code remains invisible. However, the control code isstill
present and operates normally.

Every time the NewShell command is called, a script file witi the
name Shell-Startup automatically executes. This file is fowd in
the s directory of the Workbench disk. Here the appearance of the
Shell prompt can be stored. The following She 11 functions areonly
useful when the She 1l segment is integrated into the operating syitem
before the Shell is called. The command needed here reads:

resident CLI 1l:Shell-Seg System

These commands are usually found in the startup sequence of the Work-
bench disk so that you don’t have to enter them manually.

Programs can remain in the working memory of the Amiga for ug by
the Shell with the help of the Resident command. Tiese
commands are immedieatly accessible to the user and do not have p be
loaded from the disk drive. More information on this subject ca1 be
found under the handling of the Resident command.

You can give the AmigaDOS commands found in the c directory of the
Workbench disk other names. Many programs use AmigadOS
commands and they should not be renamed.

The AmigaShell features a function that makes it possible to all a
command under any name, or multiple names. This name is specfied
with the help of the Alias command. An example:

alias ex execute

After entering this line the Execute command can be called using the
name ex. The Alias command assigns the first character string the
same text as the rest of the line. In this case the rest of the line inly
consists of the word Execute. The following use of the Alias
command lets you call the startup sequence into ED by typing st-ip:

alias st-up ed s:startup-sequence

If you don’t want to enter the Alias command every time you opn a
Shell, you can place the Alias commands in the s directory inthe
script file Shell-Startup. As already said, this script file autorati-
cally executes with each NewShell.

The Alias command without the additional statements lists the erist-
ing name assignments.

115

4. WORKBENCH 1.3

AMIGADOS INSIDE AND OUT

4.1.5

Syntax:

Remrad

remrad

Abbreviation for (Remove Recoverable RAM Disk). This command
erases the contents of the reset-resistant RAM disk device called rad:.
The RAM disk then takes up a relatively small section of memory.
When the computer reboots, this memory is returned to the system.

4.1.6

Syntax:

116

Resident

residentNAMEEILEQELETE/&ADD/SﬁBPLACE/SEURE/SﬁYSTEM/S

This command loads the user’s favorite CLI commands into working
memory. CLI commands Or programs previously had to be loaded from
disk before they could be used. Because of this you had to leave the
Workbench disk in the drive even though the commands would often
involve other disks (for example: the Dir command). Resident
makes it possible for the user to load his most frequently used
commands into working memory. Then the command is in memory.

Before the Resident command existed, the important commands were
copied into the RAM disk and DOS was informed by means of the
path command to look in the RAM disk before it accessed the Work-
bench. This method functioned very well except for one large disadvan-
tage: When a command in the RAM disk was called, it still had to be
loaded just like from the disk drive. This is a very inefficient use of
memory because the command is then present in two locations. Each
new call of the program copied another command into RAM.

Commands loaded using Resident are loaded into working memory
once. When it is called a second time from a second CLI, the program
is executed from the location in RAM.

A CLI command must meet some requirements before Resident can
properly function:

. The command must be re-executable. This means that you must
be able to use it from more than one CLI. Example: The CLI
window lists the directory of driveé df0: while the Dir command
is being used in the CLI window 2 for drive dfl:. Most CLI
commands, with very few exceptions, are “re-executable” on the
Amiga.

ABACUS

PURE

NAME/FILE

4.1 NEw CLI COMMANDS OF WORKBENCK 1.3

The commands must be re-entrant. As descri
' . scribed above, the
lgram_ code of a Resident command can only be found in%rr?;
ocation when the command is executed in several places # the
is:?]ee tusne. ;I'lhe zfsature g;at makes a re-entrant command o jood
use of local variables th i
of the mropm, at must be replaced with everycall

To understand this problem we’ll descri
| cribe an example. Su
;e:ecuti. a drawing program t!xat contains the color code for 3120 csgn}-,e(::t
: xtthco or 1n a memory location. This memory location gives the iode
t:))rrede ac:;or w;l:ttemmrectly after loading the program. Change this olor
res e program. The second program h
red as the default instead of white beca e the St ol
S efa use they use the same
location. This is a harmless example. The Amiga does not differ?:&c;z

between th] . t
foviel .e two and when the second is called, it responds with a Guru

A crash could have been prevented if the P sta

set using the PURE argument. This ﬂa(:ur;)ith Ei ﬂ}?egl: agfb:g

gg%t?th command, can be set or erased for each file. A Pure flag ells
at thg program can be made resident using the Resident

command. List the new CLI commands and you’ll see that it mikes

sense to have the Pure flag set for many commands.

Now we come to the use of the Resident command. When the
;om{nc:;nd is entered without arguments, a list of the preent
esident commands appear. When the command is entered withthe

System argument the resi
example: 8 e resident system segments are also shown.For

>1 resident system

Namge UseCount
CD 1
Dir 1
Execute 1
CLI

L System
Filehandler Sgsstem
Restart System
CLI System

UseCount supplies information ab i i
c) f out how active the respective cam-
mand is at the time. This statement usually returns a 1. A rljeeflso mens

that the command i i :
listed as System. is not being used at the time. System segments are

The NAME and FILE arguments i

specify the exact path of the commind
or segment that should become resident. Th i
the D1z command in the Shell: e following example plaes

resident c:dir

117

4. WORKBENCH 1.3

DELETE

ADD

REPLACE

AMIGADOS INSIDE AND OUT

When you use the Resident command in a file where the Pure flag is
unset, the following error message appears:

pure bit not set
Cannot load XxX
(xxx stands for the filename)

When Pure is unset, a file can still be loaded using Resident by
adding Pure. The message Pure bit not set is displayed in this
case. The PURE argument should be used with caution because pro-
grams where the Pure flag is not set are not usually re-entrant.

The DELETE argument eliminates an entry from the list of resident
files. The following example removes the Execute command from
the list:

resident execute delete

The UseCount value of a system segment is set at -1. Because an entry
can only be removed when UseCount is at one, a segment cannot be
erased using remove.

The ADD argument makes it possible to make more commands or
segments resident with the same name. It can only call the last entered
command from the shell.

The REPLACE argument replaces any command (or segment) with a
command (or segment) already in the list. For example, if the
Execute command was resident, entering the following would replace
it with the Date command:

resident execute date replace

ABACUS

4.1 NeEw CLI cOMMANDS OF WORKBENCH 1.3

4.1.8

Syntax:

Setenv/Getenv

setenv NAME/A, String
getenv NAME/A

These commands are not currently i

] : y implemented. When th
mst.:ﬂled, you'll be ab_le to make use of environment variableesy (?hr:
environment handler 1s_snll missing). For now the handler cin be
simulated by the RAM disk, but full use is not yet realized.

4.1.7

Syntax:

118

SsetPatch

setpatch

This command is found in the startup sequence on the new Workbench
disk. It modifies the Kernal so that a Guru Meditation does not follow a
Recoverable Alert. SetPatchisa background process started by using
Run. It can be created with the help of the Status command.

4.1.9

IconX

This command allows you to call a scri
{nai) pt file from the Work
double clicking on it. The following must be done beforehagcr‘l; bersh by
. Create a Project icon for the scri i ;
¢ 1 pt file with the help of the
editor on the Extras disk. The CLI icon is loaded ix?to the ecllgt(c))‘;

from the Workbench, modifi
the script file, ied, and then saved under the name of

Open the disk drawer with the new icon, click on the icon and
choose the Info menu item from the Workbench menu The
S$YS:C:IconX command must be entered in the Default
Tool gadget. Save the Info window. The script file can now
be: called by double clicking on the icon. Descriptions about the
window size f01: the output of the script files can be made n the
Tool Type string gadget in the Info window. For examyle;

TOOL TYPE WINDOW=CON:0/0/400/100/Script window

The window can i ; .
the following: stay open after processing the script file by enering

TCOL TYPE DELAY=1000

Delay time must be given in 1/60 seconds.

119

4. WORKBENCH 1.3

ANHGAIN)SINEDEAND()UT

Workbench 1.3 Devices

The Mount command now allows you to connect new devices in
AmigaDOS. This section shows these devices, suggests what to look
for in them and how you can interact with them.

4.2.1

The NewCon device (newcon)

The Shell uses this new window interface for output and input. The
newcon: device is similar to the old con: device from the CLI. Before
it can be used it must be mounted, like all other devices, using the

Mount command:

mount NewCon:

The important entry in the Mount List file found in the devs drawer
on the Workbench disk should 1ook like the following:

NewCon: Handler = L:Newcon Handler
Priority=5
StackSize =1000

4.2.2

120

The RAD device (rad)

:

The abbreviation RAD stands for Recoverable Ram Disk. This is a
reset-resistant RAM disk for the Amiga. The RAM disk device named
ram: loses all of its information after a reset. A normal reset does not
affect the rad: device. In most cases the data can even survive a Guru

Meditation.

The rad: device has at least one disadvantage. RAD doesn’t have a
dynamic memory system. RAD uses the same amount of memory
whether it contains any data in it or not. A typical entry for the rad:
device in the MountList looks like the following:

RAD: Device = ramdrive.device
Unit = 0
Flags = 0

ABACUS

4.2 WORKBENCH 1.3 DEvicis

Surfaces = 2
BlocksPerTrack = 11
Reserved = 2
Interleave = O

LowCyl =0
Highcyl = 21
Buffers = 5

BufMemType = 1
#

You must specify RAD's capacity i i
'S capacity in the HighCyl parameter be
z?t; 1clzén }rzn:gnt RAD with mount rad:. Each cylindgr has a capafc(;;
o .ted) would have a capacity of (21+1) * 11K = 242K if it wee
o cted using the above entry. RAD must be formatted before it ¢
used with the FastFile system. "

oAffte:r a re:reet,rilsltgo:dhzge to dccl)l is enter mount rad: and the contens
.RAD red. If you discover that i
DiskDoctor to restore RAD. some daia fs lost, use e

When RAD is no longer needed, the largest section of its memory cn

be freed by using th
the Assigyn o n%m; (ﬁemrad command. It can be removed by usirg

assign rad: unmount

The entire memory area that i :
next boot operation. was occupied by RAD is then free after the

4.2.3

The Pipe device (pipe)

'éhlflfse geer;,tlcti Sokpsen% :‘communication channel for data exchange betwean
. This communication channel consists of
S a 4K
buffer that can be written to and read at the same time by a task, G

Before a pipe: device can be i i
e arouipe: . used, the device must be mounted using

mount pipe:

Any number of communicati
I on channels can theoretically be open it
once. For this reason the pipe: device name has a channelynameI::lded

to it. In the following example the actual i
loaded into ED with pipe “test”: ual contents of the directory 22

dir >pipe:test
ed pipe:test

121

4. WORKBENCH 1.3

AMIGADOS INSIDE AND OUT

This was only possible through an intermediate file in Workbench 1.2:

dir >df0:helpfile
ed df0:helpfile

ess waits until another process is finished if the chanr}el
ggag‘ilg) l:; I:\rc?tclarge enough. For example, if the output _of the e.rm;e.
directory contents is directed to the Workbench disk usxr;l%l abplzf:1 sé
device (dir >pipe:test opt a), the process waits a W e bec e
the buffer cannot take any more characters. In this situation a secon
Shel1 can help read out of the pipe.

4.2.4

The Speak device (speak)

This device controls the Amiga’s speech output. The speak: device
must be mounted using the Mount command:

mount speak:

Example for speech output:

echo > speak: "nice to see you”
dir > speak df0: opt a
type s:startup-sequence to speak:

. : . ing Opt.
i oretically possible to choose different output t_nodes using
¥hl: t;lr‘c:sem; spgaplg handler does not evaluate the options correctly.

4.2.5

122

The Aux device (aux)

ial i iga. The data is no
This handler supports the serial interface of the Amiga.
longer stored in a temporary buffer. The aux: device must be mounted
using the Mount command:

mount aux:
Multi-user operation can be realized with the Amiga (see Chapter 5)

through this device. The transfer parameters are set from the
Preferences program.

ABACUS

4.2 WORKBENCH 1.3 DEVIES

4.2.6

The FastFileSystenm

You'll find this new handler program in directory 1 of the Workbench
1.3 disk.

Generally, a file system can be viewed as an enlarged handler. It handles
the organization of data on the disk differently. A file system also does
not access the device directly, but deals with device handlers.

So like the Speak handler uses the speak.device, a file systemcan
address the t rackdisk.device to read data from a disk drive. A file
system is not fixed to any special device. To address a hard disk, mike
an entry in the MountList and the file system accesses the hard drive.

Until now communication with the connected drives (floppy or hard
drive) took place over the file system found in the Kickstart operating
system. The new FastFileSystem (abbreviated FFS) was invened
for drives whose memory medium does not change (RAD, hard disk).
The name reflects the improvement over FileSystem: It is some-
what faster than the old file system.

Because a disk change is not allowed, the FFS functions only with a
hard drive or the new RAM disk RAD:. Only partitions that are aot
automatically mounted on the hard drive work with FES.

To take advantage of the new FFS, the following lines must be entered
for the device and partition in the Mount List:

Globvec = -1

FileSystem = L:FastFlleSystem
DosType = 0x444F5301

These changes can be made easily using ED. The call for ED looks lke
this:

ed devs:mountlist

Then the device can be connected using mount <Devicename>. This

command should be entered in the startup sequence following the
BindDrivers command.

Before the first access the hard drive or RAD disk must be formatted for
the FastFileSystem. The Format command must have the adied
argument FFS. For example:

format drive dhl: name Part_1 FFS

123

4. WORKBENCH 1.3

Addbuffers

124

AMIGADOS INSIDE AND our

You only have to format the partitions if the hard drive is already
divided into partitions. The entire hard disk must be reformatted if a
partition in the MountList changes the statement after the LowCyl
or HighCy1 parameter.

Special attention should be given to the AddBuffers command (see
Chapter 2) when using the FFS. In opposition to the old file system,
increasing the buffer memory using AddBuffers also increases the

speed. This increase is especially evident in the output of the directory
when using the Dir command.

S.
CLI Tricks and
Tips

ABACUS

5. CLI TRICKS AND T1PS

S.

CLI Tricks and Tips

The purpose of this chapter is to solve some of the problems that rou
may sooner or later encounter while you work with the CLI. Som: of
these items have been known in the Amiga community for a long tine;
others are “hot off the press.”

In addition to these tricks and tips, you'll also find plenty of additimal
information and advice about the CLI.

137

AMIGADOS INSIDE AND our

§. CLI TrICKS AND TiPs

5.1

1170

Input and Output in the CLI

i j key in the CLI

robably wished that you could just press a
:no; l?::: S\e outpyl'xt go the printer. What e;ac,t,ly stax:as télee t?:l?lrllt;hlz
aid, “Pressing the Return or Enter key”, you ht.
Yl%l;ni’s more to it than pressing a key. You can also execute the pant

out by pressing the <Backspace> (¢-) key.

i t as a completely

ing output in the background can almost act as 4
gi‘;?;::ngt task.tp It’s possible to enter a newbcomm_an(;i c::xhslil;x 2:11 t:rtgo c‘grlx;

S) arrie ’

mand is still working. Not all ogtput canbec C oo .
i 1d command is finished execu

so the new command waits unu} the o 1 . g

i i ino to do with the multitasking capa y
xgﬂigmssin}é?l)n(‘))g] gclfnmands are always executed one after an(_)ther._ln
spitegoi' this, work can be done somewhat faster pecause DOS is active

through all of this. An example:
copy text to duplicate

delete text
ion i leted (e.g., the disk is
me reason the copy operation is uncomple
gx{gr tsk?e data file text is lost. Now there 1§ nexrtlhclar ?nc&%);l I;OSI; t;};e
..’ : ! elp g
al. A tip: The DiskDoctor can sometimes
?irc;;glfnlt's assfx)med that no writing has taken place to the blocks of the

data file. This should be checked out in any case.

ABACUS

5.2 WILICARDS

5.2

Wildcards

Old Commodore users who upgraded to an Amiga miss the old* and ?
wildcard characters. These characters made it possible to enter ashorter
filename on the older generation computers (e.g., PET, VC20, (64). If
the user wanted to erase the files named test (testl, test2,
test3, etc.) from a disk, the Scratch command used in conjinction
with the name test* deleted all these files, and any other files begin-
ning with the letters “test”). If the user wanted to deal only wih those
data files whose names are five letters long, the question mark ould be
used (e.g., Scratch “test?”). A file named testlversion in
this case would remain untouched. The two wildcards can be combined.
For example:

w22?22version*"

In this case all the files with the word “version” in them startiny at the
fifth position and having any letters after that are addressed. Thefollow-
ing data filenames would fulfill the requirements of this example

TestVersionl
LastVersionCfToday
FourVersion

Those new to computers can get the idea of wildcards from thes: exam-
ples.

The number sign (¥) can be used in place of the asterisk on theAmiga.
The question mark looks for an exact character position in the fiename.
The # sign is as flexible as the asterisk. As you may know, aaumber
sign in at the beginning of a filename sometimes means nothirg more
than a word or number. A numerical value is also expected behind it
sometimes. For example, the Dir command can be enlarged byadding
Test #3a so that it searches only for those filenames that surt with
Test and end in three A’s. This function is not patterned after the
asterisk. If, instead of the number, you entered a question murk, the
characters following the question mark would be ignored. Thenumber
sign combined with the question mark become the equivalen of the
asterisk wildcard. For example, the following input displays al files in
the directory ending with .info:

dir #2.info
A few examples follow. Their purpose should be to determine vhich of

the filenames would be found given the Dir commands vith the
respective parameters.

129

§. CLI TRICKS AND TIPS

Filenames:

Dir,
versions:

130

AMIGADOS INSIDE AND OUT

Cat.1 1.Dog
Cat.2 2Dog

Catnip Doggy
Pussycat ~ Wiener_Dog

1. Cat.?

2.C#?
3. 9771777177?

7. 1M2s#7

The following would be the results if each of the above Dir commands

were entered:

1: Cat.1, Cat2

2: Cat.1, Cat.2, Catnip

3; Wiener_Dog

4: all files

5: no files-

6. 1Dog, 2.Dog, Wiener_Dog
7. Pussycat

The last example clearly shows that many combinations are possible as
long as they make sense.

ABACUS

5.3 BREAKING IN THE CLI

5.3

Keyboard
breaks

Breaking in the CLI

The Amiga doesn’t have a <Run/Stop> key like the C64. But it’s pos-
sible to stop the execution of a CLT command by pressing <Ctrl><Cs.
All CLI commands react by returning to the program from which they
were called (in most cases, the CLI itself). As a reminder of endirg
before the command was finished, the message *** Break
appears.The three asterisks indicate an interruption of type C. From this
type of interruption come <Ctrl><D> through <Ctrl><F>. Each
<Cul> break has its own advantages. <Ctrl><D> works only in
conjunction with the Search and Execute commands.

The Search command, which can search entire directories for a given
character string, reacts to <Ctrl><C> like every other command: Tte
command stops. If <Ctrl><D> is used, the file being searched at the
time is dropped and the next file searched. The <Curl><D> command s
a less suitable break command than <Ctrl><C>.

It is somewhat more difficult with the Execute command. <Ctrl>
<D> stops execution of script files made up of CLI commands (ste
Chapter 6 for more details on script files).

Basically, <Ctrl><C> has a higher priority than <Cul><D> for tte
execution of a CLI command within a script file. The CLI command
currently running ends, and control returns to the DOS level. When it
leaves the command, it leaves an error code (error number >= 10) when
it returns to Execute, so that the script file is left under the output of
the message (example: <Ctrl><C> for carrying out the Search com-
mand). If the command returns to the DOS level without a message, the
script file works as normal (Example: <Ctrl><C> for carrying out the
Dir command).

<Ctrl><D> has a special function for the Execute command. By
entering this key combination, the active CLI command of the scrijt
file finishes its work and then execution of the text file is stopped. Ths
can cause problems when the CLI command itself reacts ©
<Cul><D>:

The search command responds to <Ctrl><D>. If <Ctrl><D> is used
while this command is working through a script file, the Search
command reacts and not Execute. After the Search operation end,
the script file isn’t left unless there are no more commands.

131

5. CLI TRICKS AND TIPS

Command
breaks

132

AMIGADOS INSIDE AND OUT

If you start a command using Run, an independent task starts. No more
input can be sent to it from the original CLI wmdow. This is treated as
a “non-interactive process”. Only the output is shown on the screen. A

sample:
run dir dfo0:

. .. . for
After the input of the new number that is given fc_:r this process (
example [CI.I.,I2]), the main directory of the disk is displayed in the CLI
window. The command doesn’t react any more to <Ctrl><C>. The
output goes on undisturbed.

. . . . X
There is a way to exit a non-interactive process. The CLI Brea

command acts)llike the <Ctrl> key. The command waits for the number
to be stopped and the associated letter of the branch interrupted (c-f). If
all of the interrupt calls should be used, the ALL argument can be used

to do this.

For interrupting the directory output of the above example the com-
mand must read:

break 2 ¢

The Break command can stop operation o_f a command ghat was
entered in a different CLT than the one that is presently active. The
number of the process that corresponds to the CLI number must

simply be entered.

ABACUS

5.4 THE RAM DIsK aND THE CLI

5.4

CLI
commands in
the RAM disk

The RAM Disk and the CLZI

This section is for the user who has only one disk drive. Difficulies
frequently arise out from this minimal configuration. These canbe
eased with the help of the RAM disk. The fortunate user can buy more
floppy drives but the addition of a RAM disk can be much more rewad-
ing.

The first CLI frustration occurs when the Workbench disk is remowed
and any other disk is inserted. Then the main directory is searched forby
means of the Dir command. A requester appears in the upper left hnd
comer with the message Please insert the disk Workbench
in any drive (or something similar). If you click on the Cancel
gadget, the Amiga tells you that no Dir command is available. The
Workbench disk causes this problem. If you enter the more speciic
dir df0:, the same thing happens.

As we mentioned in Chapter 1, every CLT command is nothing mare
than a short program that must be loaded from the disk before it canbe
used. In normal cases these commands are found on the disk that vas
used to start the system. On the Workbench disk the commands e
stored in drawer c. The operating system knows exactly which diskis
the system disk at power-up. It can be addressed under the name Sys:.

The above example has an error in it. The Dir command wasn’t givn
with the correct name of the disk on which the desired directory is kept.
df0: is just the label of the drive. DOS finds the Dir command on he
Workbench disk and displays the directory of the disk that is in drive .

If you enter a specific disk name (e.g., Dir Games :), DOS loads he
Dir command from the Workbench disk, asks for a disk with the nane
Games, and then displays the directory of that disk.

Insert the Workbench disk and enter the following three lines:
makedir ram:c

copy from df0:c/dir to ram:c
path ram:c add

Now you can insert any disk and read it by using Dir d£0:. The Dir

command is quickly loaded from the RAM disk. The individual con-

mands have the following functions:

Line 1: Creates a directory in the RAM disk (c)

Line 2: The CLI copies the Dir command from the current diskio
this directory

113

S. CLI Tricks AND Tips

134

AMIGADOS INSIDE AND OUT

Line 3: DOS looks in the ¢ directory of the RAM disk for the CLI
commands before it looks on the disk that contains the CLI

commands

The Assign command is an alternative to the Path command.
Assign lets you assign a completely new pathname SO that you can
search for CLT commands. Look at the list given when the Assign
command is invoked: Under the Directo ries heading you'll find the
C entry. To the right of this entry a pathname is given (e.g., A500
WB1.2 D:c). AmigaDOS looks for the CLI commands in the directory
given there. When starting up the computer AmigaDOS automatically
Tooks in directory c on the system disk. This can be changed very
easily using the Assign command:

makedir RAM:cC
assign C: RAM:c

Now the Amiga understands only the commands located in the ¢ direc-
tory of the RAM disk. Immediately following the MakeDir command,
the important DOS commands should be copied into this directory. If
you want tO access the commands on the original disk, the entire path-

name must be entered:

sys:c/assign C: sys:c

This disables DOS access to the RAM disk. Sys: addresses the system
disk. If this disk isn’t in the drive, a requester asks for it.

The following lines copy the basic CLI commands:

jram_cli

makedir ram: ¢
copy c/assign ram:c
copy c/dir ram:c
copy c¢/cd ram:c
copy c/copy ram:C

copy c/delete ram:c
copy c/makedir ram:c
copy c¢/rename ram:cC
copy c/newcli ram:c
copy c/endcli ram:c
copy c/run ram:c
copy c/list ram:c
assign C: ram:c

Other CLT commands can be copied into the RAM disk if you wish.
Limit yourself to only the most important commands, because some
commands like SetClock orDate only take up memory. Users that

have only SO0K of memory can run into problems with this.

(X84

ABACUS

.w..:%xm drive
copies

5.4 THE RAM Disk AND THECLI

Mwwmnwaas MSQ is important and it isn’t on the RAM disk, using dther
esagnBasian C: oys o) o e complte pahvame ¢ e

: a - - .20 . .
to be loaded from the system &mw.m ©ct=8711:30:35) allovs it

If entering the command list at every session takes too long you can

perform the same proc i i
e Bl process with a script file (see Chapter 6 for detals on

If you need further informati
. ation about the MakeD1i
Assign commands, see Chapter 2. SpLn, Copy, Pathand

Copying a single data file or i
ane . . L,
no problem. The Copy command %mwn MMMC,\Q USIng two dik drtes is

copy dfO:utilities/notepad dfl:Helpprogram

How do you copy with onl i i ame
) yot y one drive? One option i i
of the disk instead of the drive number. For mxhdwm“_m fogivethe

c
opy from BeckerText:Letters/Peter to Text:Letters

DOS automatically alternates betw i
ee i i
number. This method has two &mm%mﬁwmmwm disks and gnores the tive

1. The name of the two disks m
v ust always be known
2. Many disk swaps must be made, even for a short file

M_M: wwwm .MM%% Mm_mm %ﬂw@g %m_w HMo_. storing the file before it joes

t t disk. e disk that contains the file to b i

is placed in the drive. The desired file i i P ek e

the Copy command. Then the destin o no.v_ou e in et
> : ; ation disk is placed in the dri

the amm:ma.Em is nom_ma onto it from the w>~<w disk J&%Mﬂ%ﬂa

process copies the entire ¢ directory to another disk: . &

w. . (insert source disk)
2 . copy df0:c ram: A.oo@ the directory contents to RAM dist)
: . (insert destination disk)
m. makedir df0:c (create directory named “c”)
. copy ram: df0:c (copy directory contents to destination dsk)

The operation can onl i
y function when the Copy and MakeD1 -
mands have already been copied to the RAM disk and M_m m&.monanﬂ_%

informed using Assi
signorPath. The two comman
when the system disk is not in the drive. s must be procnt

After the copy operation, the data in the RAM disk should be erasel so

the memory can
fhe mem Y be returned to the system. The command for ths is

delete ram:c all

This erases the entire C directory that was placed in the RAM disk.

135

5. CLI Tricks AND Tips

AMIGADOS INSIDE AND OUT

5.5

Printing from the CLTI

Those of you that do a lot of printing from the Workbench should get

your money’s worth from this section. This section deals with the
basics of printing from the CLI, the problems that can occur and some

solutions.

5.5.1

136

.

File printout with Copy

Copy enables the duplication of an entire directory or a single data file.
The argument template reads:

coPY FROM,TO/A,ALL/S,QUIET/S

A quick recap: The FROM and TO arguments specify the source and
destination of the operation; the ALL argument copies all files from the
FROM directory. QUIET performs a “quiet” execution of the command
(it suppresses the output of the command).

Copy can access any connected device—it isn’t limited to the floppy or
hard disk. The possible data flow directions depend on each device. For
example, the printer cannot be used as a data source; it can only be used
as a destination device. A disk drive can be used for reading and writing.

Enter the Assign command without arguments, and look under the
Devices heading:

DF0 DF1 PRT PAR SER RAW CON RAM
We are only interested in the printer (prt :) device for now.
The following command gives you a printout of a text file:

copy name_of file to prt:

Which output format should you use? That depends on the parameters
set in the Preferences program. Also, if a serial data transfer is
desired, Preferences handles the printer as a serial device instead of
a parallel device.

e

ABACUS

5.5 PRINTING FROM THI CLI

The printer device is easy to use throu
) gh Preferences.
ggte s;r:gsﬁndgtz:v gg tlt;he %nnter needs no more provisionse ;a‘: I%rég;fr:;g
pe, ng width and paper length. The command charac
g::tgr are inserted so thg data can be interpreted. For speciﬁr:s?;rtgﬁ
¢ gotten around using the rough drivers par: and ser:.D ta
goes directly to the peripheral. P

5.5.2

Redirecting output

Output can be sent to an i i
ny device using DOS commands. Th 21 i
ghsually the defz}ult device. There’s no reason why you couldfl’stccr;vag l:
mztc%l;trglrlxtt <(i§vlice. Tl:: following example would send the direc toy %)f
sk out the serial port i i
through amodem f yor ko tego) : (you could transmit your direitory

dir > ser:

All devices that can receive data can be
_ : replaced by the prt : (pri
:ﬁ;lffé ggglpclg ::;le; the command, a space, a great);r malxblrsign,(flr;mp?crg
in frestony (prt:). The following example prints the curent
dir > prt:
The following example prints all the directories on the current disk:

dir > prt: opt a

The following example prints all the directories on the RAM disk:
dir > prt: ram: opt a

The following example prints the text He11lo:

echo > prt: "Hello™

The following example prints the startup sequence:

type >prt: dfl:s/startup~sequence

$.5.3

Printer control characters

The printer drivers in the Prefer i
e | S ences program have a few thiigs
¥n551ng. You cannot use foreign character sets or double-strike mae.
Ou can get around this in AmigaBASIC using the CHR$ commind

137

5. CLI TRICKS AND TiPs

138

AMIGADOS INSIDE AND OUT

(see your AmigaBASIC manual or Abacus’ AmigaBASIC Inside
and Ouf). The CLI has no equivalent of CHRS, so another way must
be found.

The basic problem with control codes is that they can’t be accessed
directly from the keyboard. A few can be accessed by pressing <Ctrl>
and another key. For example, control code 15 enables condensed mode
on most Epson printers. The user can access this by pressing <Ctrl>
<O>. Every control character has a corresponding letter. But be careful:
The O is really an uppercase O and not a lowercase 0 (remember to
press the <Shift> key). You cannot see control codes on the screen
when they are entered, but that doesn’t matter. The important thing is
that the printer understands them. The user must direct the output to the
printer.

The use of the Echo command is applied here. It is used for special
output of text. The following example shows how Echo is used in
conjunction with a control code (note the brackets):

echo > prt: [Ctrl and 0]

The brackets mean that you should enter the key combination, not the
text. The space before <Ctrl><O> is required.

After the following command is input all text that is sent to the printer
will be printed in condensed mode.

echo > prt: (Ctrl and T}

It's difficult to interrupt a CLI command by pressing <Cul><C>. A
trick here is helpful. Using BASIC, create a file on the disk that
contains the command <Ctrl><C> in the form CHR$(3) (A=1, B=2,
C=3). The following program shows you how:

OPEN "df0:CTRL-C" FOR OUTPUT AS #1
PRINT#1, CHRS(3)/
CLOSE#1

Run the BASIC program and return to the CLI. Now <Ctrl><C> can
be sent by using one of these two commands:

COPY FROM df0:CTRL-C TO PRT:
TYPE >prt: df0:CTRL-C

Next is a multiple-number escape sequence. This covers all of the
printer control codes that can be accessed through the <Esc> character.
At least one <Ctrl> character follows each <Esc> command. The
<Esc> key can be found in the upper left hand corner of the keyboard. A
typical Epson command entered in BASIC serves as an example. The
CHRS (9) enables the Amiga’s Norwegian character set:

ABACUS

5.5 PRINTING FROM THECLI

The CLI equivalent looks like this: .

echo >prt: [ESC]R[Ctrl I]

A space m
- % ‘ ust follow the colon, but there cannot be one before orafter

Of course some difficulty can arise when you w i
languages. C programmers use brackets [] and t};races ? }rkT:;;hcgh l:
gc:sged by using t’t,le American character set if you enter a letter it the

phabet bgfore A”: CHR$ (0) is used. Again, a BASIC programthat
has the desired sequence in a file is of some help:

OPEN "dfO:USA-Set" FOR OUTPUT AS #1

PRINT#1,CHR$(27) ;"R";CHRS (0);
CLOSE #1

Run it and copy the file to your CLI wi i i
T rk i
activates the new character set: ork disk. The following ine

COPY USA~Set prt:

139

§. CLI TricKs AnD TIPS

AMIGADOS INSIDE AND OUT

5.6

Printer/
typewriter

Creating
text files

Appending
text files

140

Using the Console Device

The Console device permits a few added features in the CLI. The
following section should give a few experiments with this device.

Basically, all output created from CLI commands from the current
window can be directed to any device. It is sometimes useful to direct
output to a specified window. For example, if you want to see the main
directory of a disk then return to the CLI, you don’t have to open a new
window using the NewCLI command. The following command dis-
plays the main directory of the disk in drive zeroina specified window:

run dir > con:lo/10/400/100/main dfo:

You can stop the display at any time by clicking on the window and
pressing any key. The output continues if the <Return> key is pressed.
The window automatically disappears after the command finishes
executing.

Nothing is easier from the CLT than turning a connected printer intoa
typewriter. The following command is all it takes:

copyY * to prt: /\

The asterisk causes all input to be sent to the printer after the <Return>
key is pressed. An advantage Over a normal typewriter is that you can
correct the line of text before pressing the <Return> key. The entire
line can be erased by pressing «Ctrl><X>. Pressing <Ctrl><\> retums

the user to the CLT prompt.

There are times when you may need a text file in a hurry. To quickly
create a small text file, the following will suffice:

copy * to dfl:text

The difference between this command and the one in the previous
section is that this command sends the characters to the disk drive
instead of the printer. There they are placed in a data file under the name
text. You can edit these files later using ED Edit. This function can

also be ended by entering <Ctrl><\>.

If you want to append one text file to another, use the following
command sequence:

Join con:10/10/400/100/Input df0:textdatafile as df0:newdata

ABACUS

5.6 USING THE CONSOLE DEVIE

g; th_l cl> é’Lp command merges data files together. In this case, the fist

daa ;s inacon wmdow and the second file is a text, file that

4 Yy exists on the disk. The result is stored under th
ewdata on drive df0:. ° nane

After entering the command, a windo i
¢ L w of the given dimension
grt:; s?:gtrZCtg?i 1\s gomg1 tc(l)e stt:rt the text file can be enterzgpt?:g.
<\> concludes the i i ,
e it e T Shoeme e input and stores the resulting file sn

Naturally the input can be added to th
e end of the te
parameters after the Join command must be exc?lan)geg:le. The firstvo

Jjoin df0:textdatafile con:10/10/400/100/Input as df0:newdata

A CLX alarm You may find yourself losing track of time during these CLI sessiors

clock

Keyboard/
AScll

conversion

'SI::;E’.:“ m:l clockBon th;a1 Workbench disk that can be programmedto
X arm. But it has a few disadvantages. First, it tak
time to load. Second, it requires too much memory. 'It"hird, o:iyaa{)c:[f

lute alarm times i i
oot can be programmed. Finally, an alarm time must be

The following lines create a low-budget clock:

run wait 10 min + (Return)
echo "Hey, the coffee's done !" (Return)

Urr(x)fcortunately the output always appears in the window from which tie
process was sta_rtecL You should remember that this CLI can
cover another window. et

You can make the screen flash when your time is up. To do this, tie

command code i
command cthis: must be enlarged by adding <Ctrl><g>. The revised cole

run wait 10 min + (Return)
echo [Ctrl g]"Hey, the coffee's done !" (Return)

The Wait command makes the alarm i
(see Chapter 3 for details of Wait). B0 off at an actual clock tne

Because the CLI clock is a separate task, you can set more than ine

alarm clock at a time. ?
the CLI slows dO\f/r:)e. If you open the maximum number of tasks (2{),

I‘:nnﬁwing the ASCII codes of all of the keyboard characters on te
l kga.can be helpful when programming. Before you buy a bookto
ook this up, enter the following line from the CLI:

type con:300/10/150/50/Converter to * opt h

141

§. CLI TriCks AND TIPS

142

AMIGADOS INSIDE AND OUT

indow ars in the upper right hand comer of the screen,
g;mﬁlligl you eigepf the characters for which you need to knov«; tht;
ASCII codes. The input must always be 16 characters. For example, i
you want to find the ASCII code for the letters S and J, enter the two
characters and press the <Return> key 14 times. The result appears :\n
the cL.T window. The letters have the ASCII.codes $73 and $6A,
respectively. The rest of the places are occupied by the characters
representing the <Return> key ($0A). The statements are always in
hexadecimal format. This function can be stopped using <Ctrl><\>.

ABALU>

5.7 USING THE SERIAL DEvicR

5.7

Attention:

Using the Serial Device

Everyone knows about the multitasking capabilities of the Amiga. It is
also known as a multi-user system. This enables multiple terminal; to
be connected to one central unit. Such a terminal can be any screenind
keyboard that sends the entered characters to the central unit, ind
receives the information that the central unit gives. The task ofthe
central unit is, in the case of the Amiga, to work on more than one
program at a time,

The function of a terrninal can theoretically be taken over by any small
computer interfaced to the central unit with the correct connection (c.g.,
Model 100, C64, Atari ST, etc.). Because the Amiga can only addess
one serial connection, additional terminals can only be added by usng
extensive hardware and software,

We’ve tried this. Our configuration used an Amiga 500 as the termital,
and an Amiga 2000 with a hard drive and two floppy disk drives asthe
central unit. We hard soldered the connecting cable ourselves. Eachend
had a DB-25 connector, joined to a 7-wire cable. The length of the cible
is relatively unimportant because a serial transfer is not very susceptble
to trouble. The connection looked like the following:
Pin_with Pin. Function:

TXD->RXD (sender - receiver)
RXD<-TXD (receiver - sender)
RTS->CTS (handshake one direction)
CTS<-RTS (handshake other direction)
0 DTR->DSR (function control)

DSR<-DTR (function control)

GND (ground)

NN B WN
NANAUNW

Notice the completely symmetrical pinout. It doesn’t make any differ-
ence which end is connected to which computer. When buying the IB-
25 you should pay attention to the case: Some of the gray DB plugsfit
poorly in the Amiga. The connectors that bolt into the Amga
connector are better yet (and naturally a little more expensive). Th:se
can be used to connect an Atari ST computer as a terminal as well.

Our cable supported 3 wire handshake (xON, xOFF) and also the RTS/
CTS handshake,

Make sure both computers are turned off before connecting the two. The

8520 chip and the RS-232 system will continue to work as long as you
follow this rule,

143

§. CLI TRICKS AND TIPS

144

AhﬂGA[N)S]NSﬂH!AND()UT

For our first try in the CLI we entered and saved the following parame-
ters in both computers with the help of the Preferences program:

Baud rate 9600
Buffer Size 512
Read Bits 8
Write Bits 8
Stop Bits 2
Panty None

Handshaking RTS/CTS

We tried the terminal program that came with the Extras disk first. Both
programs told us the modem wasn’t ready, and that a Carrier Detect
signal error occurred on pin 8. This signal is always active in the
telecommunication system if the transfer signal is received from the

receiving computer.

We then entered the following command on the central unit (Amiga
2000):

run copy ser: to con:10/10/30%Zi:0/Receive

All data that was received should have gone in the window that was
specified. Then we sent the current main directory of the Amiga 500

through the serial connection:

dir > ser:

Result: It didn’t work at first. After the first output from the disk direc-
tory the first file finally went to the Amiga 2000. The rest remained in
the receiving buffer until we pushed new data in behind it. This is a
program error, since no end of file marker was sent. This bug isn’t easy

to remove.

The transfer took place in principle, and we have the multi-user system
to thank for that. There’s a simple solution for the central unit: The
NewCLI command can enlarge a con window. On one hand the
command is received in this window, and on the other hand the CLI
command writes its output in this window. The following trick is so
simple: Direct the NewCLI command through the serial device as

follows:
run newcli ser:

If the the connection works like it normally is expected to, the 2000
can serve a terminal over the RS-232 interface.

1t isn’t easy to simulate a true terminal from the CLI. Here we simply
sent a small script file from the 500 to the 2000. Because the file was
long enough, the first commands from the CLI background process C_>f
the 2000 worked. Suddenly the hard drive ran because Dir jh0: was in

the program. In addition, the status command announced it

ABACUS

5.7 USING THE SERIAL DEVICE

presence. In any case, the first step i i i

{ 3 p in working with i-

g;ltienm t1}51 taken. Kx_mwledgeable C programmers will ha\t/};englulr%bliser
g the connection and writing a terminal program proviem

We have one more use fo
e ave one more use r the cable. Change the command used to load

loadwb ~-debug

After starting the Workbench i
everything looks normal. i
mouse button and move the pointer around on the menufl’ar:rs.sstrgdrelrglil;

an untitled menu appears ini i
20 mditied 1 ppears, containing two items: Debug and

It’s now possible to call up from a second computer through the ROM-

Wack (a kind of di i .
Meditation occurs. agnosis program), in case a Task Held or Guru

found on the Exias Gk in (e B emae . o fov s he rogram
S cDemos drawer. If th

lé)axéii chl)/ 32;)1 the tr}llght mouse button is pressed (press the :g(}:l?ggtlt:)er{

10 cancel/de| 1:53;1 fre memory of the computer can be examinet with a

i pth eg o Mom anothgr connected computer. The Debug item

eravles the K -Wack if no interruption takes place. The

flu item normaII.y _doesn’t do anything visible (we couldn’
gure out the purpose of this item). Now for an example: t

Computer A and com
uter 4 puter B are connected by an RS-
following lines create a Task Held condition in Zomputirzgzz catle. The

mount resO:
dir > resQ:

dTihr:cfoer)S/ OI:f cﬁ;rsicdeeisicfglix:c} 1tn the c;ata file MountList of thedevs
¢ . integrated into i i
to it, the Task He 1d condition usually aptg:a;\s?uga and ouiputis sent

If the right mouse key is pressed, a Guru Meditation appears. Pressing

the right mouse button agai)
terminal computer: again causes the following output fom the

Tom-wack

PC FE66EB SR: G015 USP
: = 022B32 ssp: 07
DR 00o0EEFE b ¢ O07FFF2 XCPT: 0003
PO Q00FFFF ggg%gsls 00000001 00000000 000223§?s§0025§;200000001!
S 2395 ABABABABABDD a6a’y 090 00022394 QOFF4834 0000SD4A 00004588
ABAB 015 OOFE 66E8 0000 0000 0000 0676 QO0FC 07DC OOFC)7DE

‘.‘}vsascelr(ngi:ar tle:x;:»_erts can analyze this statement and can manipulateROM-
pack o e interrupted computer. Pressing a question markon the
oty ezf)mputer shows a list of the commands that the ROM-Wack

alter boot
clear £111 find go is limit 1ist regs reset resume set show use!

145

§. CLI TRICKS AND TiPS

146

AMIGADOS INSIDE AND OUT

Here are their important commands:

Alter changes the contents of the memory

Boot the interrupted computer is re-booted

Clear memory areais cleared

Fill memory area is filled

Find memory area searches for a certain hex value

Go starts program

Regs shows the contents of the register

Reset (behaves like “boot’™)

Resume If Debug was chosen from the Workbench, the Workbench
is activated again

The address area is changed so thata negdress can simply be entered
(without each command).

We dealt with the Task structure that begins at $0221A0 in the
example (see register notices under Task). The command simply reads:

n0221a0"

This gave the following message:

0221A0 0000 0810 0000 080C ODOA 0002 2BB§ 0002 ... LAHP....~HAL*M*J.."B +... B

With the help of the Abacus Amiga System Programmer’s
Guide, we pushed the address where the pointer for the name of the
interrupt task was contained. It is the address “022BB6” from the above
line. Here it reads:

022BB6 5245 5330 0000 0000 0000 0002 3338 0000 RE S Oueenronsnosnnsss 3 8.

Tt was really the task Res0 that caused the Amiga to hang up. Itis nice
to know why a program jumps into a Guru Meditation. In a Task Held
condition, the memory of the Amiga can be examined by a monitor
program that was started from a second CLI process.

The interesting ROM-Wack function clearly shows that the RS-232
connection can function exactly as it is expected. Data transfer at 9600
baud functions flawlessly.

6
Script

Files

ABACUS 6. SCRIPT MILES

6. Script Files

All computers that have forms of DOS have some form of scrip! file
processing capability. AmigaDQOS is no exception. Script file; are
similar to batch file on MS-DOS computers.

This chapter shows you what can be done with this technique andhow

it is done on the Amiga. In addition, you’ll find a number of pragical
uses for script files that you might not have thought of before.

149

6. Scriet FILES

AMIGADOS INSIDE AND OUT

-

Introduction to Script File
Processing

The following sections will acquaint you with script file processing on
the Amiga. We’'ll see at the end of this introduction if you understand
more or less about this subject.

6.1.1

What are script files ?

Basically, CLT commands make up their own small programming
language. For example, the Echo command can be compared to the
AmigaBASIC PRINT statement. The only problem is that CLI

commands can only be entered in direct mode; the CLI has no program

mode like BASIC. The command executes after pressing the <Return>
key. The most important feature of a programming language is

missing: The commands cannot be stored. In addition, there is no
program branching allowed—CLI commands can only be executed one

after another.

Script files are text files that can be created in a word processing
program or text editor. These files consist of a succession of CLI
commands. It doesn’t matter whether you create a script file using ED,
BeckerText, the Notepad or whatever, just as long as the text is saved in

ASCH format. The file can be saved under any name.

ABACUS

6.1 INTRODUCTION TO Scripr FILE PROCESSIVG

Besides the “normal” CLTI commands allowed i i

: _ ed in script files, a list
special commands exist, whose use in CLT windows pwouldn’t r:al?f
make sense. They are the commands: Y

echo

failat

quit
if/else/end
skip/lab
ask

wait

If the commands If, Then and Else did n i i

» ot exist, a script file woud
have to be executeq.from top to bottom, without any potential fir
branching. The additional commands make it possible to change tie

program flow. A detailed descripti
program flo ption of these commands can be found n

6.1.2

150

What script files look like

The simplest script files consist entirely of CLI commands, like the
ones that you enter in the CLI or Shell). Each line can only contain
one command. Comments are allowed; they must be separated from the
command by a semicolon, and the length is limited to the length of the

respective line.
A very simple script file can look like this:
copy test#? testprogram ; coples all test versions into

delete test#? ; a special drawer and erases
; them from the main directory

6.1.3

Calling script files

The Execute command runs the scri i

] : pt files (see Section 2.3 fur
details of this command). In the simplest case, you would entr
Execute then the name of the script file you want to run. The follow-

;r:,iﬂ?ézlxgple runs the myscript file on drive df0: if the file 5

execute df0:myscript

After myscript executes the CLI is ready to execute new commands

It’s very practical to use a background task for runni i
E : ng script files. F
this, the script file can be called using the Run commaid: d ¢

run execute dfO:myscript

Thg Opeérating system separates Execute command sequences so thz
while the script file is running, further work can be done in the CLI.
Eventual!y, output appears in the CLI window because a backgrouni
task that is not interactive does not have its own output window.

A simple example

To close this short introduction, we want to go through a simple
example step by step to show how a script file is created and config:

151

6. ScrieT FILES

Assignment:

Solution:

152

AMIGADOS INSIDE AND OUT

U . . the

cript file is built using ED. This program uses tu
;x:)rr?ngitccﬁez’o?msnan%s and makes it easy 10 work qrt;lsh(:(t)t :ve;:sk. m
i erfect tool for script files. It is also possible 1
l’lie;‘:;rg, BeckerText, Notepad or any other word processor that saves its
text as ASCII data.

i i ical batch commands on the
Write a script file that lists many of the typic
scrréen. The %le should contain the names of the commands.

You must open a CLI window. ED must be called using the following
syntax:

ED Commands

After i i Because no file

ile the empty input window of ED appears. E 1
with t?u;v:la;\e exists?tgxe message Creating new file agspecﬁ bu;
the lower left corner of the screen. Now the required comman

entered:

;Commands

echo "execute”

echo "echo"

echo "failat™

echo “"quit"

echo "if/then/else"”
echo "skip/lap"
echo "ask"

echo "wait"®

Press the <Esc> key then the <x> key to save the file under the given
pame in the actual directory and exit ED.

Now you can execute this script file using the Execute comimand.
Enter the following:

execute Commands

The result that appears in the CLI window looks like this:

execute

echo

fallat

quit
if/then/else
skip/lap

ask

wait

See Section 2.4.1 for detailed information about using ED.

ABACUS

6.2 MODIFYING THE STARTUP SEQUINCE

6.2

Modifying the Startup
Sequence

You now know what a script file is and how to use it. For many who
heard about the concept for the first time in Section 6.1, you maynot.

have known that your Amiga executes a script file every time youmm
it on,

Before we explain this, we would like you to make a copy of your wig-
inal Workbench disk. When the Workbench disk is mentioned in later
sections, you should be using your backup copy, not the original. Siore
the original copy in a safe place.

Open a CLI window and place the Workbench disk in drive df0:. Fater
the Dir d£0:S command. A file named startup-sequence is
found there. Before this file is displayed it is a good idea to makethe
CLI window as large as possible. Now enter:

Type df0:S/Startup-sequence

command sequence. After the drive runs for a short time, the contens of
the file is displayed on the screen. We recommend that you have your
mouse in hand right after you press the <Return> key. Press and fold
the right mouse button to halt the scrolling of the screen; release the
right mouse button to continue the scrolling. The Workbech 1.2 Aniga
startup sequence appears on the screen (An Amiga 2000 statup
sequence is given here; the Amiga 500 startup sequence is shorter.):

echo "AS00/A2000 Workbench disk. Release 1.2 version
33.61*N"

echo "sample Startup-Sequence for use with a Hard Disk
with Workbench installed"
Sys:System/FastMemFirst
BindDrivers
addbuffers df0: 20
IF EXISTS sys:system
path sys:system add
ENDIF
IF EXISTS sys:utilities
path sys:utilities add
ENDIF
SetMap usal
makedir ram:t
path ram: add
failat 25
assign >NIL: dhO:
IF FAIL

153

6. Scriet FILES

154

AMIGADOS INSIDE AND OUT

echo "Transfering control to DHO: *N"
path reset
assign SYS: dhO:
if exists dhO:c
assign C: SYS:c
endif
if exists dhO:l
assign L: SYS:1
endif
if exists dhO:fonts
assign FONTIS: sys:fonts
endif
if exists dhO:s
assign S: SY¥S:s
endif
if exists dhO:devs
assign DEVS: SYS:devs
endif
if exists dhO:1libs
assign LIBS: sYS:1libs
endif
{f exists dho:t
assign T: SYS:t
endif
if exists sys:system
path sys:system add
endif
if exists sys:utilities
path sys:utilities add
endif
path ram: add
cd dhO:
ENDIF
LoadWB
setClock >NIL: Opt load
endcli > nil:

i i ly CLI
look at this file, you may notice tl}at on
igﬁaﬁea;g\?s%%. The commands of this file automatically execute
after you start the Amiga.

This file tells the computer what conditions should Exxsth\:rt’le:sntgta&tz
up (memory configuration, etc.). When you make cde [go S ony
startup sequence, remember that they should only be ma o the copY
of the Workbench disk. It’s important that you have an u
Workbench in reserve, in case you make a typing error.

for
The first few lines echo a message uto tht:h screzr;r :230 rti]::esn Zhig]fw e

in di i ath to these .

certain directories and sets ghe p oS, A et
IF constructs follow.

i gn commands framed in I£/ Erfd °
?:nss:rgcts search for the ¢, s, t, 1, Libs, devs, fonts, ?r(;;.?he
and Ut ilit ies directories. Make sure these files exist by en
following in the CLI:

ABACUS

6.2 MODIFYING THE STARTUP SEQUENCE

dir dfo:

We can remove the IFs, EndIfs and the .info files associated with
these directories. The following lines remain in this section of the
sequence;

echo "A500/A2000 Workbench disk™
Sys:System/FastMemFirst
BindDrivers
addbuffers df0o: 20
path sys:system add
path sys:utilities add
SetMap usal
assign C: S¥S:c
assign L: SYS:1
assign FONTS: SYS:fonts
assign S: SYS:s
assign DEVS: SYS:devs
assign LIBS: SYS:libs
assign T: SYS:t
LoadWB
endcli > nil:

You can decide whether the MakeDir RAM:t line should be deleted or
not. If you delete it, no disk icon of the RAM disk appears after the
startup sequence is done working. If you leave the line in, then the disk
icon of the RAM disk appears on the screen. We decided against the
disk icon and deleted this line from the startup sequence. The following

Path RAM: add command is also useless to us. We deleted it. Do
whatever you did to Dir RAM:,

Is it important for you to know how late it is when your Amiga is
turned on? No? Then delete the SetClock opt Load line fromthe
new startup sequence. If you want the clock, leave the line unchanged.

The next line, LoadWb, loads the actual user interface (the Work-
bench).

The EndCLI > NIL: command closes the CLI—leave it in your new
startup sequence.

All of the important commands from the old sequence are contained in
this new one. The directories mentioned in the sequence must be onthe

Workbench disk. If this is not the case, there will be trouble duringthe
startup.

What happens when the new sequence is used instead of the old oie?
We tried this, and compared the results of the two. The new sequeace
was 50% faster than the old one (it saved half of the startup time). You
can probably profit from this saving of time.

If you have an Amiga 500 and examine its startup sequence you cansee
that the Assign command is not used.

155

6. Scrrpr FILES

Making
changes:

AMIGADOS INsIDE AND OUT

You don’t have to create a new sequence from scratch; just change the
old sequence. The easiest way to change the old one is to use the ED
editor from the Workbench disk.

Place the copy of the Workbench disk in drive df0:. Enter the follow-
ing command sequence from the CLT:

ed df0:S/Startup-sequence

The drive runs for a short time. The editor starts and the old
startup~sequence appears on the screen. The only thing that you
must do now is position the cursor, with the help of the cursor keys, sO
that it stands in a line that isn’t needed in your new startup sequence. It
doesn’t matter where the cursor is in the line. To erase this line, simply
press <Ctrl>. All of the lines that need to be erased can be disposed
of in the same manner, When all of the lines that don’t belong in the
new startup sequence are erased, the text must be saved. Press the
<Esc> key, the <X> key and the <Return> key to save the edited text.

Now you have a faster startup-sequence. Read the next section
1o see how you can make further modifications to the startup-

sequence.

6.2.1

156

The custom startup-sequence

In the previous section you discovered that it is possible to change the
startup-sequence. The following shows you how to make the
startup-sequence more user-friendly. That means that the
startup-sequence has to be lengthened by a few lines. In the end
you'll have to decide which is more important; speed or user-
friendliness.

Because we want to modify the startup-sequence again, we need
a basic setup. We took the shortened version from Section 6.2 and
edited it. The startup sequence of the Amiga 500 can be edited in the
same manner.

Before we change the sequence make sure you are familiar with the Ask
command. In case you aren’t, you should iook back at Section 2.3 6.

Now we hope that you know how this command works and how itis
used.

ABACUS

6.2 MODIFYING THE STARTUP SEQUENCE

Look on your Workbench disk in dir
[. ectory c to see if
ggmm;]ng %‘ff:}:zn?dv;ls(xons of the Workbench dlon)’l?uhgszetgliz
: <) u to your computer deal iend i
don’t have it to see if the i : ol iyt i
y have it on their Workbench di
have found someone with this comm o e o Oﬂdxrecce a
; and, copy it into i
In the course of this book, you will need the Ig k commt;l:dc.: 4

Now back to the startup s
: tup sequence. Have you ever been annoyed
l‘:zgdto c:',h;k on an icon after startup before you could h);vetgagl?g
ow? You can get around this problem by deleting the line:

EndCLI > NIL:

g;ngzgglién t::ns :: h:ndled more elegantly by adding the Ask

: rtup-sequence. We would lik

suggestion as to how this would w . ot oo i
ork. Insert the following linesi

your startup sequence before the last line. Hlowing finesin

ask "Would

ask w0 you like to open a CLI window 2 (y/m) "

ask "A large (y) or small (n) CLI window?"

if warn
newcli "con:0/0/550/200 "
e /Startup CLI
newcli "con:0/0/160/3 v
enmit /30/Startup CLI"
endif

When you have finished adding this to your startup-sequence
’

you can see the results by pressi = i i
and the <Ctrl> key at the);:m: St:?ngeth © <C> ey, ight <Amiga> ley

The startup~sequenc
e re- iti
question s asked: qu executes. Before it is completely done, a

Would you like to open a CLI window ? (Y/N)

You need to press the <Y> ke
D y or the <N> key, depending o
)tglvv&grrllt‘ ;e;végdo»; or not. <N> closes the windowp:nnd ygu’?e‘gggihte;
. <Y> prompts another question: The pro i
you want a large or small window. Regardl f . program asks f
window with the name Start.u gardless of what you enter, 2 2uT
. ; p CLI opens. <Y> 0 |
window. Pressing <N> opens a ve i e windin
- ry small window. This wi

should really be held in reserve; use it only if you have to. s windw

V\r/ien;nlly wfante@ to show that something like that is possible. This
gxam pl ee of using Ask can be applied to other things as well. For
Whenpyo,uya(;g vcv%ullg ask 151 tthhe Workbench should be loaded or mot.
: rking with the CL1I, the icons aren’ i
be accomplished easily by using the Ask comman::al:l tneeded. This an
k ”
i; wai:ould the Workbench be loaded? (y/n)"
loadwb

157

6. Scriet FILES

AMIGADOS INSIDE AND OUT

endif

The LoadWb line in the startup sequence must be replaced by the above
four lines.

The two examples above are only a small portion of what Sl?sbeui?x‘é:
to customize the startup-sequence. You can arrange eq!
to fulfill your wishes and needs.

i i i this subject in Section
like to give you more ideas abox}t Sect
ZJSe %?;13 you’ll ﬁr%d a script file that can be integrated very easily into

the startup—-sequence.

6.2.2

158

Workbench 1.3 startup-sequences

3 b

As the title suggests, Workbench 1.3 handles multiple siqtzzc?é?;n li
discuss the file named stabrtqp—lseg;:g;:wix;stt.ditfferem same

i i 00, .

n as Version 1.2, but 1t lo _ v

fsu'? :t:t):up-sequence may vary since the Amiga system 1S always
expanding and improving.
c:irun >NIL: c:SetPatch ;patch system

H -
Z:hz “A500/A2000 Workbench disk. 1.3 versiozo ?ast
Sys:System/FastMemFirst ; move c00000 memory

BindDrivers .
Buffers dfC: 1
Adc1>NII..- -0 ; start FastFonts ‘ erecute
;Fk Dir.Ram'T ; set up logical T: dir for Exe
ake :
Assign T: ram:T
MakeDir Ram:Env
Assign ENV: ram:Env) . or aad
path sys:utilities sys:isystem ram: sys: Si &
Sys:System/SetMap usal
ock

gozgﬁzck >NIL: load ;load sys time from real té:zlil

Zsident CcLI L:Shell-Seg SYSTEM pure } activatemand
iesident c:Execute pure ; load the Execute com

er
con: ; mount improved console handl
mount new :

endcli > nil:

; set up ENV: directory

e 4 o in
A line here or there could be remqve_d. we'll discuss each lm::. 1
ion, starting with the first. be n

succesismn : because this is where the system 15 patched 'a :(;
modified a bit. It should be mentioned that the leél'I‘Pat:rcb}:3 zﬁggd i
should only be entered once. This command should ne‘llfshould g
the CLI or Shell. Now we come to the §econd line. a8 e
retained. The Echo command takes little time and ca: belaen;(t)ay .The
next line organizes the memory area and shou .

ABACUS

6.2 MODIFYING THE STARTUP SEQUINCE

BindDrivers command should be eliminated if you don’t haw any
memory expansion in your computer.

The value of the AddBuf fers command could be changed from (0 to
another value, but don’t do it. To obtain faster text output, the FF
command must be used. Next, the t directory is placed in the RAM

disk. This isn’t absolutely necessary. This means that both commands
can be removed. That also goes for the next two lines.

The lines containing Env: should be left alone. The next two lines
adding the path and setting the correct key map should not be debted.
The following line loading the Workbench should be left abne.
Whether or not you keep the next line depends on if you have a batery-
powered realtime clock in your computer. The following Resident
command absolutely must be there, otherwise the new Shell wil not
function. You can decide for yourself whether the Execute comnand
and other commands should be in the Resident list. The new Sha11
needs the new Console handler NewCon:. This line should be kept.The
last line closes the CLI window. Whatever you want to add is » to
you. Remember that every line you add increases the duration of the

startup sequence. There are two startup files in the s directory. Ore is

called the CLI-startup and the other is the Shell-Startupfile.

One is for the CLT and the other is for the Shell. The respective file
is executed every time a CLI or Shell window is called. In the CLT

this is only the command Prompt “$N”. In the Shell the folloving
command is used:

c:Prompt "$N.%S> "

alias xcopy copy (] clone
alias endshell endcli

The shell-Startup file may contain more Alias commads.
What the Alias command does and how it can be used is discussed at
the end of this chapter. There are also more examples for using the
Alias command. These examples can be integrated into the She.1-
Startup file. The Shell-Startup must be edited with an edtor
or a word processor. The CLI~-Startup can be edited in the sume
manner, but the Alias command is not allowed in the CLI only vith
the Shell. Instead, all of the CL.I commands can be used.

159

6. Scrirt FILES

AMIGADOS INSIDE AND OUT

6.3

Practical Script Files

Using script files can save you a lot of typing and time. We hav:e put
together some script files for you to examine. Even if you don’t use
these files you should look at them for examples.of what is possible.
You may want to create your own script files. First we have written
some scripts that work with Workbench 1.2. These also work wgth
Version 1.3. In addition are some scripts that work only with

Workbench 1.3.

This book has an optional disk available for it. On this disk there is a
directory named Scripts. All script files in this chapter are found in
this directory. The names of each are found in a comment line at the
beginning of each program.

6.3.1

160

A special printer script file

Have you ever printed a file out on your pri'nter? You may have noticed
that the text always has the same style. This secton shows you how to
change this situation. To do this, a little knowledge about printers 18

necessary.

Different control characters can be transmitted to the printer. These
control characters control the appearance of the printed text. The Amiga
uses printer escape sequences that send commands to the printer. We can
send the printer escape codes with the help of the command:

COPY * TO PRT:

After entering this command and pressing the <Return> _key, all input
goes directly to the printer. You only have to enter the desired command
sequence on the keyboard. Since it is difﬁcult to place these escape
sequences generated from the keyboard inside a script file, so they can
be sent to the printer, you must send the datain a round-about fashion.

We put these printer escape codes in different files for that reason. We
would like to show an example of how this is done. In our example
we'1l deal with the command sequence for the NLQ type style. Enter the
following line in the CLI:

COPY * TO NLQ

ABaAcus

6.3 PRACTICAL SCRIPT FIiEs

The drive runs a short time after you press the <Return> k

the file NLQ. All keyboard input that follows is sent dir?c,.tll; gge?htex:
‘f:lle'. T,l,xat means that no input is shown on the screen. You will type
: bhnd’ . Wheq you enter the command sequence for the type style NLQ,
it can’t contain any errors or it will not work. Pay special attentior;
when entering the following characters (Esc refers to the <Esc> key):

ESC[2"2z

After you press the <Return> key the drive runs for i
; a short time.
command sequence mentioned above goes to the file, Te

To return to normal mode, press <Ctrl ><\>.

The procedure is the same for accessing Bold, Italic and R i
: eset pringr
type styles (just use the filenames Bold, Italics and Reset instzad of

NLQ). Consult your Amiga User Handbook for the pri
needed for each option. printer escape codss

The type face on the screen may change when you access the printr
type style. For example, when you execute the command sequence fir
italics, L‘he output on the screen appears in italics. This can be solved
b){ sending the command sequence for reset (<Esc><c>) as the last
thing you transmit. This resets all styles to normal.

The fgllowing script file uses the four script files NLQ, Bold
Italics and Reset. The files contain the appropriate printer escapé
sequences. The optional disk for this book, named “AmigaDOS Oyt
Disk” contains these files in a directory named Printer routines,

Place the four files in a directory with this i
oo s the four files ry name or alter the script file

This i§ the script file referred to by the title of this section. Enter this
file using an editor and save it under the name Printer.

.key Filename
;Printer
if “<Filename>" eq "v
echo "*nYou must enter a filename.*n"
quit
endif
if "<Filename>" eq "?7?"
echo "*n*nCall: execute Printer Filename*n®
echo "Don't forget to enter the path,*n"
quit
endif
if exists <Filename>
ask "Print the file in NLQ? {y/n)y »
if warn
. copy AMIGADOS OPTDISK:Printer_routines/Nlg to prt:
else

echo "Ok, draft mode, then."
endif

161

6. Scrret FILES

AMIGADOS INSIDE AND OUT

ask "Print the file in bold type? (y/n)"

if warn
copy AMIGADOS_QPTDISK:Printer_;outines/Bold to prt:
else
echo "Ok, no bold text, then."
endif
ask "Print the file in italics? (y/m)"
1f warn
copy AMIGADOS_QPTDISK:Printer_routines/ltalic to
prt:
else
echo "Ok, no italics, then.”™
endif

copy <Filename> to prt:
copy AMIGADOS_QPTDISK:Printer_routines/Reset to prte

echo "Ready."

else
echo "Sorry...I can't find the file <Filename>."

endif

To print the startup-sequence with this script file using the optional
disk, enter the following on one line:

EXECUTE AMIGADOS_QPTDISK:SCRIPT_EILES/PRINTER
SYS:S/STARTUP-SEQUENCE

You may have to alter the above command depending on where you
stored the Printer script file. You can call it using Execute, the
script filename and a filename to print. The questions are asked one after
another. Be sure that your printer is capable of each printer option
before answering each question.

When the questions have been answered, the startup-sequence
file starts to print out in the selected type style. A different filename can
be substituted instead of the startup sequence. The pathname must also
be given if the file is stored in a subdirectory.

We used only three type styles. You can add more styles to the file if
you desire. Before doing this, the respective escape sequence must be
written to the file as described above.

6.3.2

162

Creating your own script files

Here are three more examples of creating your own script files. You
could consider these new commands, even though they are accesse
through the Execute command.

ABACUS

BACKUP

WINDOW

6.3 PRACTICAL SCRIPT FILkg

The first example copies any fi i
copi y file on a disk to
E::'Vel)f(' lcreated file is ;ixfferent from the original ifl g:xclak:gnclglj(ycb;’f;g:
1le extensions of .bak). Enter the following lines i i
save them under the name Backup. OFlowing lines in an ediie and

.key Filename

sBackup

if "<Filename>" eq ""
ec?o "*nYou must enter a filename.*n"
quit

endif

if "<Filename>" eq "?2%
echo "*n*nCall: execute Backup Filename*n®
ecpo "Don't forget to enter a path.*n"
quit

endif

if exists <Filename>
copy <Filename> to <Filename>.bak

else

echo "*ns '
endis nSorry..I can't find the file <Filename>.*n*

You can call it using Execute, the script fil
; , e and
complete command line looks like the followl;ng: # flenam. A

EXECUTE BACKUP Filename
This creates a file that has the label Filename .bak.

The second script file lets you o i i i

; pen up to six CLT windows withone
common command line. Enter the following lines i i
the file under the name Window. g ines in an editor and ave

.key number
;Window
if "<number>" eq "?2"
echo "*n*nCall: execute Window number*n"

echo "Numbe
o r must be between 1 and 6 inclusive.*n"

endif
if "<number>" eq "~

:c?s "*nYou must enter the number of the window.*n"
X .

else
skip <number>
lab 6
newcli "con:0/0/319/59/A CLI"
lab 5 -
newcli "con:320/0/319/59/A CLI"
lab 4 -
newcli "con:0/60/319/59/A CLI"
lab 3 -
newcli “cc-:320/60/319/59/A CLI"
lab 2 -

newcli "con:0/120/319/59/A CLI"

163

6. ScrirT FILES

Note:

164

AMIGADOS INSIDE AND OUT

lab 1
newcli weon:320/120/319/59/A_CLI"

endif

The command can be called by entering the following, with the variable
n representing a number between 1 and 6 (be sure you areé in the correct

directory):
EXECUTE WINDOW n

The Amiga may respond with an error message. This can be caused by
insufficient memory, or by the user entering a number outside the
allowable numeric range.

Before we talk about the last file, we want to give you a piece of advice
dealing with the t directory, the directory used for temporary storage. It
stores different files here after an Execute command has been run.
These are used internally by the computer. When a script file is called
and the message Disk is write protected appears, don’t panic.
The computer can only grab things from the T directory.

When working with a RAM disk, this message does not appear. The
computer may generatea t directory in the RAM disk on its own.

The last subject that we’ll discuss in this chapter is the RAM disk.
Here’s a script file that copies a few commands into the RAM disk. The
commands are copied using shorter names. Here is the script file:

.key Parameter
;RAMoON
{f "<Parameter>" eq el
echo "*n*nCall: execute RAMon*n™
echo "You don't need to enter any parameters.*n“
quit
endif
if not "<Parameter>" eq
echo "*nYou must not enter any parameters.
endif
if not exists RAM:d
makedir RAM:d
copy sys:c/copy RAM:d/c
copy sys:c/path RAM:d/p
assign c: RAM:d
p add sys:c

nn
k™

copy sys:c/copy RAM:d/c
¢ sys:c/path RAM:d/p

endif

¢ sys:c:dir RAM:d/ad

c sys:c:execute RAM:d/ex

c sys:c:delete RAM:d/del

c sys:citype RAM:d/t

c sys:c:irename RAM:d/r

¢ sys:c:echo RAM:d/e

ABACUS

6.3 PRACTICAL SCRIPT FILES

" i
e "Abbreviated commands are now available."

Enter these lines in an editor and save them under the name R2M
After you have started the file with Execute RAMon, the shortez:ci
commands C, P, D, EX, Del, T,R and E are ready t(; be used. The
commands that these letters represent are found in the lines above..

It is possible to abbreviate m
’ ore commands. You must be car
you don’t use the same abbreviation twice. efil that

The assigning of the abbreviated commands i
g can also be used
startup sequence. The lines should appear at the end of the setl;lienc: the

To free up more memory and stop usi mman
p using the shorte
have constructed the following script ﬁleg: ed o o we

.key Parameter
;RAMoff
1f "<Parameter>" eq "22"
echo "*n*nCall: execute RAMoff*n"
echo "You don't need to enter any parameters.*n'
quit '
endif
if not "<Parameter>" eq ""

echo *nYou must not ent any par eters.*n
er an

if exists RAM:t
delete RAM:t all quiet
endif
cd ram:d
delete #? quiet
cd dfo0:

cho .
r Lo n 1 g
e Abbreviated commands are no onger available

This program should be saved under the n RAM i
ame of £. By enterin
E‘.i:::cct:c\).xtet RAM tho m: c;hortened commands are erased andyso s subg-
ry t in the isk. This frees up m
A p more memory to be used for

%?u will discover that the D directory in the RAM disk isn’t erased.
bee Amiga woulq give us a message saying that this directory tannot
erased if we tried to delete it. The RAMon script file accesses the d

directory in the RAM disk during e ' .
present. g execution. The directory must be

This is a small price to pay for abbreviated commands.

165

6. ScripT FILES

AMIGADOS INSIDE AND OUT

6.3.3

166

Working Workbench 1.3

This chapter uses the commands of Workbepch 1.3. You can try to
create the script files with the 1.2 commands since all of the co;nmands
are present on Workbench 1.2. But that doesn’t mean that it will work.
Most 1.3 commands offer more options than 1.2 commands.

The script file in this section creates a working copy of Workbench 1.3.
we’ll explain shortly what we mean by a working Workbench.

When you sit at your computer, you generally know what you want to
do. For this reason you only use a few of the c;c_)mmands Or programs
on the Workbench. Sometimes you need an additional program, such as
a disk monitor or another editor. We recommend you prepare mu}nple
Workbenches that have more or less the same structure, but contain the
additional programs. For example, you could have a word processor as
the main program on one disk and a database on another disk, etc. The
script file below prepares a work dgsk 'that has all of the basic
Workbench programs needed to run applications.

Before you start the file, make a copy of the original Workbench 1 3.
Enter all of your Preferences and save them on the copy. This is
very important because later it will be impossxb‘le to change the d.lS!(.
The startup—sequence and the MountList §h_0u1d also be in
order before you start with the script file. Place the original Workbench
1.3 in a safe place. The following is the script file, do not enter the line
numbers, they are only for reference.

;Workdisk

sys:c/makedir ram:Workdisk
sys:c/makedir ram:Workdisk/c
sys:c/copy sys:c/Copy ram:Workdisk/c
sys:c/cd ram:Workdisk/c

copy sys:c/Addbuffers ram:Workdisk/c
copy sys:c/Ask ram:Workdisk/c

copy sys:c/Assign ram;Workdisk/c
copy sys:c/Binddrivers ram:Workdisk/c
10 copy sys:c/CD ram:Workdisk/c

11 copy sys:c/Delete ram:Workdisk/c

12 copy sys:c/Dir ram:Workdisk/c

13 copy sys:c/Echo ram:Workdisk/c

14 copy sys:c/Endcli ram:Workdisk/c

15 copy sys:c/Execute ram:Workdisk/c
16 copy sys:c/FF ram:Workdisk/c

17 copy sys:c/If ram:Workdisk/c

18 copy sys:c/Install ram:Workdisk/c
19 copy sys:c/Lab ram:Workdisk/c

20 copy sys:c/Loadwb ram:Workdisk/c

21 copy sys:c/Makedir ram:Workdisk/c
22 copy sys:c/Mount ram:Workdisk/c

\D(ﬁ\ld\(ﬂbwl\)b—'

ABACUS

N 6.3 PRACTICAL SCRIPT FILES

23 copy sys:c/Newshell ram:Workdisk/c

24 copy sys:c/Path ram:Workdisk/c

25 copy sys:c/Prompt ram:Workdisk/c

26 copy sys:c/Resident ram:Workdisk/c

27 copy sys:c/Run ram:Workdisk/c

28 copy sys:c/Setpatch ram:Workdisk/c

29 copy sys:c/Setclock ram:Workdisk/c

30 copy sys:c/Skip ram:Workdisk/c

31 copy sys:c/Type ram:Workdisk/c

32 copy sys:c/Iconx ram:Workdisk/c

33 ;Additional commands may be placed here

34 copy sys:c/date ram:WOrkdisk/c

35 copy sys:c/failat ram:Workdisk/c

36 copy sys:c/wait ram:Workdisk/c

37 copy sys:c/list ram:Workdisk/c

38 copy sys:ic/break ram:workdisk/c

39 copy sys:.info ram:Workdisk

40 copy sys:Clock#? ram:Workdisk

41 copy sys:Disk.info ram:Workdisk

42 copy sys:Shell#? ram:Workdisk

43 copy sys:System.info ram:Workdisk

44 makedir ram:Workdisk/System

45 copy sys:System ram:Workdisk/System all

46 makedir ram:Workdisk/L

47 copy sys:L ram:Workdisk/L all

48 makedir ram:Workdisk/Devs

49 copy sys:Devs/#? ram:Workdisk/Devs

50 makedir ram:Workdisk/Devs/Keymaps

51 ;optional copy sys:Devs/Keymaps/cother_keymap
ram:Workdisk/Devs/Keymaps

52 copy sys:Devs/Keymaps/usal
ram:Workdisk/Devs/Keymaps

53 makedir ram:Workdisk/Devs/Printers

54 copy sys:Devs/Printers/generic
ram:Workdisk/Devs/Printers ;add your own

55 makedir ram:Workdisk/s

56 copy sys:S ram:Workdisk/S all

57 makedir ram:Workdisk/T

58 makedir ram:Workdisk/Fonts

59 copy sys:Fonts/Topaz.font ram:Workdisk/Fonts

60 makedir ram:Workdisk/Fonts/Topaz

61 copy sys:Fonts/Topaz/1l ram:Workdisk/Fonts/Topaz

62 makedir ram:Workdisk/Libs

63 copy sys:Libs ram:Workdisk/Libs all

64 makedir ram:Workdisk/Utilities

65 echo “*n*nPlease insert a disk in drive dfo0:.*"

66 echo "This disk will be formatted and become your
working"

67 echo "copy of workbench 1.3.*n"

68 wait 30 ; walt 30 second to change disks

69 ram:Workdisk/System/format drive df0: name
"Workdisk_workbench_1.3" nolcons

70 install dfO:

71 copy ram:Workdisk df0: all

72 cd "Workdisk_workbench_1.3:"

73 delete ram:Workdisk all qulet

167

6. ScrirT FILES

Lines 1-3
Lines 4-5

Lines 6-32

Lines 33-38
Lines 39-42

Lines 43-47

Lines 48-49

Line 50-52

168

AMIGADOS INSIDE AND OUT

74 echo "Ready!"

This script file is different in one way from the files we have mentioned
previously. The other script files required parameters to be entered. This
script file will be executred using the ICONX program. The
Workdisk filein the Script_files directory on the optional disk
available for this book can be activated with the mouse with the help of
the TconX command of Workbench 1.3. Using the IconX command
has the disadvantage that only the commands in the script file can be
used. You probably know how the lines in this file work, but here is

an explanation of them.
Creates a Workdisk directory and ¢ directory in the RAM disk.

The Copy command is copied into the C directory and the ram:¢C
directory is made the active directory. This has the advantage that the
following commands do not have to be loaded from disk.

Each line copies a command from the ¢ directory of the Workbench
into the c directory of the RAM disk. Why so many, you may ask. The
large number of commands is necessary because they are all used either
in the startup—-segquence 0r inside the script file. Some
commands are used so often that they are not allowed to be missing
from the list. These are, for example, the Dir or Type commands.

Place any more commands required by your startup-sequence
after this line. N

Here all required files are copied from the Workbench disk to the Work-
disk directory of the RAM disk.

The Systemand 1 directories are provided in the Wo rkdisk direc-
tory. Then the contents (files) of the directory of the same name on the
Workbench are copied there.

All of the files (not the subdirectories) from the devs directory on the
Workbench disk are copied into the RAM disk. This directory contains
a file with the name system-configurat ion. All information
that was entered in Preferences is stored here. The Preferences
of the computer cannot be changed because the Pre ferences
program was not copied. Another file has the name MountList. This
should be modified to your liking before using this script file.

The Keymaps directory is prepared by the devs directory. Then the
file usal (for the American keyboard setup) is copied into the RAM
disk from the Workbench. There is also an optional line for adding any

other keymap files you might want.

ABACUS

Line 53-54

Lines 55-56

Line 57
Lines 58-61

Lines 62-63

Line 64

Lines 65-68
Lines 69-70

Line 71

Lines 72-73

Line 74

6.3 PRACTICAL SCRIPT Figs

Ig:l:;f:g?i li}l)(grllitgfsdifi-% except that the Printers directory andthe
I driver are copied. You must copy the pri

Z;)l;r}‘ltx;;snp;lclﬁﬁd inPreferences. The gene:l:))ilc ﬁlsrilsnlirecﬁzg
! e. If you want other printer drivers

Printer program found on the Extras 1.3 disk. (e the Inotal-

Directory s is created on the RAM di
disk. The startup-
and the CLT and Shell-Startup files are copied into ﬁxi:;?elé;ryme

A t directory is prepared for the temporary files.

These lines show how a font i i
s copied from the Work
you want to use more fonts, add more lines like the on; »Szzgg.wsmuld

Prepares the 1ibs directo .
is copied into the RAM dxsrl-:y Then the contents of the 1ibs direcory

Wi to di
o t‘;}:l:\:tc;eraieg Et)lussdxrecequtory beca‘x;,se a“igath to this directory is plaed
. - ence. e n't co fil . A
directory. The calculator py any files into his
AP » Notepad or oth
copied into this directory if you use thexi often. er programs carbe

Text is displayed on the ; :
to insert the correct diSk.screen and the Amiga waits 30 seconds forjou

After you remove the Workbench fr i
: e th om drive df0: and replace i
blank disk, the disk is formatted and then installed (mademé)oiccaebllte;‘.,]Lh ?

This line copies the entire Workdi i
] disk directory of the RAM
%ong .wuh all of the subdirectories and ﬂlg to t;e ne dldlsskk’
orking_Workbench_1.3:. ’ N

The directory changes to the Working_Workbench_1.3: disk nd

the RAM disk could ;
e Qo name).u be deleted here (don’t forget the colon at the eniof

An ending message appears on the screen.

The file needs only one drive to
] run. Because the memo
E ;gl;yploa;sgi,lyog should have at least a megabyte of Rmees\?hdet:&%:
ible, don’t copy as many commands fr . di
You can leave off all of the comm e e serm
ands not used inside the script
These commands must be copied after the file is through runninl;.p e

To use this script file, boot i i
se th 2 your Amiga with a copy of Workbench
that is write protected. Then start the program as d;)éribed alr)oveglc .

‘When you have made a work di i i
sk with the script file, you can copyh
g;(:gnr:en:lsotthhat ytglu need onto the disk. Be careful that tlzlese progra% dg
er files that are not present on the disk. These files musibe

copied onto i P
direc . tory. your Working_Workbench_1.3: disk in the corect

159

6. Scriet FILES

AMI1GADOS INSIDE AND our

6.3.4

170

Starting the script file with the mouse

Have you noticed that you must do a lot of preparation with a script file
before you can start it? First you must double=click on the disk icon,
then open the correct drawer, then open a CLI window. A script file can
be started with a mouse click. Workbench 1.3 supplies a command that
enables you to avoid some of this work. This command is called
TconX and is found in the c directory. Here’s an example. Enter the

following line in the Shell:
echo >ram:Batch wdir df0:*ncd ram:*ntype Batch™

With dir Ram: you can check if the script file exists in the RAM
disk. The file can be executed by entering execute ram:batchin
the shell. This displays the contents of drive df0: on the screen
followed by three command lines that display the contents of the script
file. What must be done so that this file can be started with the mouse?
First, we need an icon. This icon must be a project icon like the
shell icon. We will use this icon in our example.

Exit to the Workbench. Open whatever drawers you need to get to the
snhell icon. Click once on the icon. Press and hold the right mouse
button. A menu bar appears in the first line of the screen. Select the
Info item from the Workbench menu. An Info window appears.
The word TYPE appears in the upper left hand corner. Right next to it
is the word Project. When Project or TOOL appears next to the
word TYPE, this icon can be used for our purposes.

Open the Shell again. Enter the following to copy the Shell icon
information to the Batch program in the RAM disk:

copy sys:Shell.info ram:Batch.info

When you have entered the command and pressed the <Return> key,
return to the Workbench. Double-click on the RAM disk icon. In the
window that appears you should recognize an icon possessing the name
of the script file. Click once on this icon. Then select the Info item
from the Workbench menu. This displays the Info window. Inside
of this window is a string gadget containing the DEFAULT TOOL
status. Click on this string gadget. Edit the text so that it reads
SYS:C/IconX instead of SYS: System/CLI. This text gives the
path where the TconX command is found. After you have entered the
new text, click on the Save gadget. The window disappears from the
screen. The Batch icon appears in the RAM disk window. Double-
click on it. This opens an IconX window. The same output appears in
this window as was displayed in the above case when the script file was
started with Execute. After all of the output is given in the window,
the window remains open for a short time before it automatically

ABACUS

6.3 PracTICAL SCRIPT FILES

closes. The time that the window remains open can be increased by

adding the Wait 30 ¢ i .
seconds longer, ommand. The window then remains open for 3

That was an example of how a script file can be starte

t];:ench. All script files can be started this way, with : ff;(v)vn:aiiwﬁgrk-
:conXa_ble script files can only contain commands that can be eI:n mti

directly in the CLI or Shell. Commands like Skip, Lab, If e

are not allo_wed. .You can access disk drives other than ,the R;\M ’dftlcc

You can edit the icon’s appearance if you wish. -

6.3.5

The Types script file

Hopefully you saved your work in the i
' 1 ; 3 subdirectory on the Wi
5 g;té \tlgecrAe;t?d slcn;:s ﬂfles before working througx this bwsr%ear:cg
/ ga looks for a script file if it is not found in th
girdt;,;:tory. The following script file displays the contents of eacheﬁrlneai:
ectory. You should be sure that the files in the given directory ae

script files or text files; pro 1 e
displayed on the screen. programs will print garbage when they ae

.key Directory
iTypes
if "<Directory>" eq "22?"
ec?o ";n*nCall: execute Types Directory*n"
echo "Don't forget to enter th "
ate e path name.*n
endif
if "<Directory>" eq ""
echo “"*n*nYou must enter a di
i
oie rectory.*n"
endif
if exists "<Directory>”
cd "<Directory>"
else
echo "I can't find t
Soie he directory <Directory>.*n"
endif
list >ram:Type.bat #2 lformat="type %s"
execute ram:Type.bat
delete ram:Type.bat
cd sys:

gr?‘llxecan dstﬁ this file with Execute or set the s bit of this file. The
driv ar; directory must be given. The file is called Types on the
ptional disk available for this book, for the optional disk the cdl

would i : .
savl;d tl?: r‘_ﬂ:: following (your call may differ depending on where you

1711

—_— —

6. Scrret FILES

AMIGADOS INSIDE AND OUT

execute AMIGADOS_QPTDISK:saript_files/Types sys:s

The output can be stopped by pressing the right mouse key. The output
can also go to a printer. For this, the 1format option must be
changed to Lformat="type >prt: %s”.

6.3.6

172

Putting everything into the RAM disk

The program in this section should only be used when the user has a
memory expansion. This program copies the entire Workbench disk
onto the RAM disk and directs all access that would normally go to the
Workbench to the RAM disk. You can use the rad: device (the recov-
erable RAM disk). You must change the HighCy1 parameter in the
MountList to provide enough memory in the RAD disk. Using this
file can take up so much memory that the other tasks may not have
enough room. The first script file uses the normal RAM disk, the
second uses the reset-resistant RAM disk.

;Ramcontrol script file one
echo "*nCopying directories..*n"
copy sys: ram: all

cd ram:

echo "*nTurning control over to the RAM disk.*a"
assign sys: ram:

assign c: sys:c¢

assign l: sys:1

assign fonts: sys:fonts

assign st sys:s

assign devs: sys:devs

assign libs: sys:libs

assign t: sys:t

assign utilities: sys:utilitles
assign prefs: sys:prefs

assign system: sysisystem
assign empty: sys:iempty

echo "*nDone.*n"

;Radcontrol script file two
;Remember to MOUNT RAD: before executing this file
if exists rad:Flag
skip L1
else
echo "*Copying directories..*n”
copy sys: rad: all
endif
echo >rad:Flag "Flag set."
lab L1
cd rad:
echo "*Giving control to reset-resistant RAM disk.*n"

ABAcCuUs

63 PRACTICAL SCRIPT FiLgs

assign sys: rad:

assign c: sys:c

assign 1: sys:1

assign fonts: sys:fonts
assign s: sys:s

assign devs: sys:devs
assign libs: sys:libs
assign t: sys:t

assign utilities: sys:utilitles
assign prefs: sys:prefs
assign system: sys:system
assign empty: sys:empty
echo "*nDone.*n"

The second file is somewhat longer. This is because the reset-resistant
RAM disk is always present and may be remounted using mount
rad: after a warm start. The Workbench files don’t need to be cepied
again, The additional lines take care of this.

173

6. Script FILES

AMIGADOS INSIDE AND out

6.4

Using Alias with NewShell
Commands

Workbench 1.3 has a very efficient program called the Shell. The
Shell has many advantages Over the CLI. One advantage is that the
command lines can be edited and that the entered command lines can be

stored in sequence in a buffer.

The Alias command is very useful. This command makes it possible
touse CLI commands in a different manner. You may ask why we
discuss it in the scripts chapter. The Alias command can function as a
script file, except it only takes up one text line. The line begins with
the command word Alias, followed by a character string which is the
label of the new command, followed by a list of commands Of
commands that execute a script file. That sounds difficult, but it really
isn’t. Before we give you any examples, a bit of advice. We created a
script file called Al ias.bat on the optional disk available for this
book. This is found in the Script_files subdirectory. When you
open a Shell window, you must enter the following to use the

Alias.bat file:

execute yzHO>UOm|omHUwanwnﬂwvﬁlmwwmm\wwwmm.wa
Back to our example. Enter the following line in the Shell:

Alias Ramdir Dir Ram:

Now you have access t0 the new command Ramdir. Here’s what you
did: First the command word (AL ias), then the 1abel of the new
command (Ramdir), and then the command's function (Dir Ram).
The example isn’t very useful, but it serves its purpose. Which Alias
commands are in use and how they are built can be determined by
entering Alias without arguments and pressing the <Return> key.

When a Shell window is opened the Shell-Sta rtup script file is
executed. Placing your Alias command in the Shell-Startup file
enables these commands whenever any Shell window is opened. Or
you could write them in a script file that must be called so that you can

use the commands.

The next few pages contain examples of what can be done with the
Alias command.

ABACUS

6.4 USING ALIAS WITH NEWSHELL COMMANDS

1. You would lik i
. e to change the disk dri i i
o following Lnes 8! drive without much typing. Use

alias 0 cd dfo0:

alias 1 cd dfl:

alias 2 cd df2:

alias r ¢d ram:

%@Mnowshm&m:n%w@%som v,o.,m: are can change the drive by enterng 0

, . o so with other drives as well : ,

You can also change the directory i i e e
g : tory in a given drive. To

directory to drive df1:, you must enter the command 1 mwm:mm e

2. Delete the contents of a Shell window.

Alias CLS echo "*ec"

Wﬁﬂoﬂﬂws% MM@M:M: MWMMHH. Then enter CLS. The contents of the
ndo e prompt appears in the top of i
This is accomplished wi e one
th the Echo command and
mwwwmwﬁom. The sequence is inside the quotation marks. ._#M:mwm MWM
charac %Mwwz the mgwnﬁﬂ that an escape sequence follows. The ¢
ras EoBEMMM&ow it QMSQ more escape sequences in Appendix A.
) in the second line, not the first. T i
) . To get i
appear in the first line after the screen is erased we need ms =Mo-o~

little trick. First, we
e fotioning oo must change the prompt character a littk: with

Prompt "*e[lly*e{33m*e[lm*e[3m¥s*e[Om*n*e[t"

Nmﬁr&%ﬂommwn the line and press the <Return> key you can e the
result oo SR.SQ is displayed in italics and is in a dufferentcolor.
, the input takes place in the next line. These appeaances

are a result of i i
ar o the different escape sequences in the Prompt

Now enter the new CLS command.

Alias CLSC echo "*ec*e[2y*e[2t"

When you enter CLSC to
0 clear the screen, the di ipti
appears in the top line of the window. ectory desenpeen

.H
3 . Mm:mmmcmmwﬂ% more uses for the escape sequences. The first example
e Alias command but is still rather interesting

echo "*e{lm*e[3mThis is bold and italic.*e[Om"

echo "*
man =nMWWNmeﬁbuamwmnx text on an orange background.¥e[Im"
m*e {4mThis is inverted and underlined.*e[0m"

175

6. Scrrer FILES

176

AMIGADOS INSIDE AND OUT

You see the changes affect more than the output. The Alias
command can bring about many other changes.

Alias Proml Prompt nxa{32m*e(43mEs>
Alias Prom2 Prompt ko [42m*e[31lms> "
Alias Prom3 Prompt "xe{41m*e (33mys> "
Alias Promd4 Prompt "%Enter Task*n%s*n- *

Enter echo “*ec” to return to the normal colors.

4. Every Shell window has a border and a title line. How does it look

when no title and border appear. Type the following line if you
would like to know. Then the noborder command is available for
use.

Alias noborder echo “*e[80u*e[0x*e[0y*e[31t"

After you enter this line, size the window at its full size. Enter the
noorder command. The window is hardly changed. Pressing
<Ctrl><L> and <Return> achieves the desired result: The border is
gone. To bring back the border, press the <Esc> key (you won’t see
the input in the She 1l window) and then the <C> key. Resize the
window to restore the border.

. Print a file on the printer. At the same time the computer should

still be available for use. The file should print in the background.
Alias Print run copy to prt: {1 clone

The brackets act as placeholders for the parameters entered with
print. The new command must be given the name of the file it
should print out. For example:

Print sys:s/startup-sequence

. Here is a command that makes a file “invisible” so that it isn’t

displayed when a Dir or List command is executed. The Hide
command hides the specified file from these commands:

Alias Hide protect [1 +h

The Protect command sets the h status bit of the file. The
computer must have Kickstart 1.3 to use this command, This h bit
is ignored when Kickstart 1.2 is used.

. Like in 6, the status bit s can be set. The following line must be

entered:
Alias SBit protect (] +s

When the s bit is set you can execute a script file without invoking
the Execute command.

ABACUS

6.4 USING ALIAS WITH NEWSHELL COMMANDS

8. There is already an Alias command in your Shell-Startup

file. It is th .
et ;;s e xCopy command. The same principle can be used for

Alias xDelete delete [] all

After entering this line a directory can be del
: eted.
and a directory in the Shell, Y Bnter xDelete

9. Section 6.3.2 described a scri i
] ! pt file that copies some CLI com-
mands into the RAM disk and assigns them abbreviated commalrllld

words. The CLI/Shell comman
yords. Th . ds can be shortened with the

Alias c copy
Alias p path
Alias d dir
Alias ex execute
Alias dl delete
Alias t type
Alias r rename
Alias e echo

The individual commands can be used after i i i
respective abbreviations. eatering the lines with the

177

7.
AmigaDOS and
Multitasking

ABACUS

7. AMIGADOS AND MULTITASKING

7.

The blitter

Amiga
software

AmigaDOS

AmigaDOS and
Multitasking

What fascinated us most about the Amiga was the efficiency of the
hardware and software. While other computer manufacturers delivered
the blitter (the special chip for super fast memory operations) months
after the announced date, the Amiga system was supplied with it fom
the start. While many other systems are limited to 64 colors, the
Amiga can display 4096 colors at the same time.

Even more efficient than the Amiga hardware is the software supplied
with the Amiga. Other computers use windows, but are severely limited
in the number of open windows and the number of programs theycan
run at once. The Amiga operating system allows multitasking (the
topic of this chapter), with a few limitations. The software is not yet
capable to take full advantage of the hardware.

AmigaDOS makes it possible to do multitasking on a home computer
without restrictions. This section of the operating system is laid out so
that the hardware can do many different functions and is easily expanded.
The principle of device drivers play an important part in this flexibility.
AmigaDOS supports devices that can be addressed with the same
routines, printing to the screen or the printer can be handled by the
same routine. The direction of input and output for different devices is
an essential condition for multitasking.

AmigaDOS has one drawback. This super operating system that vas
delivered with the computer does not fully utilize all of its amazng
possibilities. Multitasking on an Amiga 500 with 512K memory nd
one disk drive is like driving a Porsche in heavy traffic—exciting, but
limited. Also, the 68000 processor is very good, but AmigaDOS is
much more efficient with a 68020 processor. We can only hope that
these possibilities will soon become standard for all Amiga users.

181

7. AMIGADOS AND MULTITASKING

AMIGADOS INSIDE AND OUT

7.1

Multitasking

182

What is Multitasking?

Some of our readers may quietly laugh at this question and say that is
an old subject. Multitasking is when a computer does many things at
once. The question is not that dumb, however. Many of you work with
the CLT and wait for the disk to finish formatting or for the C compiler
to finish compiling before going on to other work. You aren’t using
the full capabilities of AmigaDOS.

Multitasking is something completely natural, Many people rarely use
the computer to do more than one thing at a time. They wait for it to
finish its work before going further. As an example, we will take a
typical human task that points out a few problems of multitasking:

Let’s make lunch; roast beef with mushrooms and onions, potatoes and
asparagus. It should be on the table at 12 noon. You couldn’t get it
done if you did each task one after another. You could prepare the pota-
toes and asparagus at 8:00 a.m. then at 11:30 a.m. finish the gravy and
set the table. But by then, the potatoes and asparagus would be cold.
You have to think about which task takes the longest and then plan
your time accordingly. Preheat your oven starting at 9:45 a.m. Put the
toast beef in the oven at 10 o’clock because you know that it takes two
hours to cook. After that, place the water for the potatoes on the stove
and slice the potatoes while that heats up. While the potatoes are cook-
ing in the water, you have 20 minutes t0 prepare the asparagus.

Let’s get back to the subject of multitasking. This was a very simple
example of everyday multitasking, and many other examples can be
thought of—from lighting a cigarette while driving to reading the
newspaper while watching TV. These examples have the same prob-
lems: While multitasking you can scald your finger in the water while
the roast beef bumns, or you can crash into another car after your
cigarette falls in your lap. It is exactly the same for the computer. You
can try to save a file on a disk that needs to be formatted and you could
write text to a file that should first be printed. These are conflicts that
should be avoided, and the following sections show you how to avoid

them.

Computer multitasking is implemented so that many tasks appear t0
work at the same time. Or to put it another way, each task operates for
a very short time so that no task has to wait for another task to finish.
Fewer problems arise using this method, so it’s better for users.
Luckily, AmigaDOS was written so well that collisions and burnt
fingers never occur while multitasking.

ABACUS

7.2 MULTITASKING WITH THE CLI AND WORKBENCH

7.2

Multitasking with the CLZI
and Workbench

Maybe you have been shown by enthusiastic friends and
] . acquan

Woi the Amiga can do many things at once. Especially FMREMM MM
the aﬁ.:.o programs 5.&: can be started one after another. The multitask-
ing ability of the Amiga is limited by memory; the more memory you
W;BF the more you can do. You can hardly show someone
E mowmaﬂwxr. Umsw.wn.._wé and AmigaBASIC at the same time if you

ave an Amiga 500 with 512K. In spite of this there are many uses for
multitasking, such as using the CLT and Workbench at the same time,

Before we show you the many possibilities for multitaski i
Workbench .w:a Gm CLI, we must mention that the @%m%m“mzﬁoﬁwm%m
Mo&._w _.z:d. multitasking capabilities.” To see this, format a disk with
mnpn ialize Ea.a to do something else while the disk is being
ormatted. It doesn’t work. The mouse pointer turns into the wait
pointer and doesn’t let you do anything else. Also, the Workbench can
mmn programs one w?.wa another, but it cannot execute more tasks

ough each other. This is why the CLI exists, so you can execute
several tasks at the same time.

It is important to have the correct commands in RAM if you are usi
MS Amiga 500 with one &mw. drive. What happens when wsnswncmmm
oads a program from the disk and AmigaDOS looks for the desired
command from the same disk can only be endured with patience. If you
wwxm two QMW drives, the system disk with the CLT commands should
% M.ao%% Mnmmf\wan ﬂs mammrﬁz should be started from the Workbench

. o : h ;
il et drive. € OW_MEW mw CLI commands into RAM using script

You should make a copy of the origi i

¢ ginal Workbench disk because we
will change the startup sequence oa it. The n

sequence ends the CLT with: el Wackbeach sartep

endcli >nil:

The CL1I disappears. Place a co e
. py of the Workbench disk .
and load the startup sequence into ED with: disk in drive df0:

ed df0:s/Startup-sequence
and erase the last line (ENDCLI >NIL:). Save the file by pressing

<Esc><X> and continue on with i
é your work on the Amiga, H
you work with the Workbench and CLT at the same time? B How e

183

7. AMIGADOS AND MULTITASKING

AMIGADOS INSIDE AND OUT

An example: Pretend that you have some important data in the RAM disk and that

Deleting
Sfiles

184

you start a program from the Workbench. This program locks up during
loading because it doesn’t have 1 megabyte available. Now you can’tdo
anything more with the Workbench. Only the wait pointer appears—
you can’t open the CLI. You can get out of this by resetting the
computer, but then you lose the data in the RAM disk. Had you placed
a CLI window behind all of the other windows, you could simply click
on it and copy the important data from the RAM disk with the
command:

copy ram: df0: all

before resetting the computer. The CLI doesn’t help against the large
red Guru Meditat ion message. When the requester:

wpask held—finish all disk activities "

appears, most of the time you are without a CLT window. Remember a
tiny CLI window in the background doesn’t use that much memory and
can save a lot of frustration.

Another use for the combination of the Workbench and the CLI is the
copying process of more data. Say you are working with BeckerText
and a friend comes by and asks you to copy your text onto his disk.
You could make the BeckerText window very small and place all
data files to his disk using the Workbench. It is simpler to click on the
cLT window and use the Copy command t0 give your friend a copy of
your files. And if his disk isn’t formatted, you can save even more time
and interruptions when working with programs started from the
Workbench, For example, enter:

format df0:

in the CL.I. When the cursor is in the next line you can enter the next
command:

copy dfl:text/#2 df0:

You don’t have to wait until the disk is done formatting to continue
your work. Your friends disk will be filled with your data while you
show him the newest game.

This can go for deleting files also. Using the Copy command you have
placed a backup copy of your text in a special directory named
Security. Now the space on your disk is getting tight and you don’t
need the backup copy any more. You could use the Workbench to open
the desired drawer, mark all the text and then erase it with Discard.
While the files are being erased you cannot work with the Workbench.
It is much easier and faster to click on the CLI window and enter:

delete dfO:Security/#?

ABACUS

7.2 MULTITASKING WITH THE CLI AND WORKBENCH

and erase everything in the directory, and you i i
the Workbench while this is happening. you can continue to wark with

The size and position of the CLI window might get i

you work with the Workbench and CLI. It n%ustgfhstnbzonu;c‘l‘:aa:n:va}llli‘:
and pushed aside before you can really work with the Worlbench
Unfortungtely the size can’t be changed without using the mouse Theré
is an easier way o get the desired CLI window. Open a ne»;l CLI
window with the desired dimensions and close the old CLI window
This section of an improved startup sequence can look like this: .

endcli >nil:

185

7. AMIGADOS AND MULTITASKING

AMIGADOS INSIDE AND OUT

7.3

186

Multitasking with NewCLI

You don’t have to use the CLI for everything. Executing important
tasks through the CLI can save time and make you much more
efficient. We’ll take a simple example that has nothing to do with
multitasking: You have written five new letters today and placed them
in directory d£0 : Let ters. There are 40 letters there already and you
want to print out the five new ones on the printer. Before printing them
out, you want to take a look at them without loading the word proces-
sor. You know that this can be done simply with:

type df0:Letters/textname
and printing the text is done with:
copy DFO:letters/textname prt:

The first problem now emerges: You don’t remember the name of each
letter. So you enter CD df0:Letters and by using Dir look at the
first text name. Aha! The name was Peter1.10.87. Now you can
quickly look at the text with:

type Peterl.10.87

and then print the file to the printer. The print process is done quickly,
but where are the other filenames. Type removed the filenames from
the screen; you must re-enter Dir to get the next name. Now you can
call up the next filename using Dir and repeat the entire process.

There’s an easier way. Start a new CLI with NewCLI. Position the
second CLI window so that it occupies the top half of the screen. Enter
Dir, so that the text names are displayed in the window (the output on
the screen can be stopped by pressing any key). You can now read the
text names in the first CLI, change to the second CLI, look at the files
using Type and print them. This method is also valuable for deleting
or copying multiple files. Display the files in one CLI window and
execute the command in another CLI window. When you don’t need the
other window anymore, you can get rid of it by entering EndCLI.

Let’s suppose that the texts are rather long and take a minute to print.
Then in our example you would have to wait a minute before you could
continue work with your text files. In such a case you could make
another CLI. In one window you could read the text names, in the
second window you could view the texts with Type, and in the third
window you could print them. One thing is missing: The coffee break
that you always took while the computer was busy working. This

ABACUS

73 MULTITASKING WITH NEwWCLI

coffee break is no longer i ;
you would like one, ger necessary with AmigaDOS, unlessof course

We hope that you have had a small
e hop 3 taste of the man ibiliti
ewxxst with AmigaDOS and multitasking, This is onlyyai(r)rslel?lal;uestitzh;t
v e w}:lmt to show you ho»y to finish your work in the shortes}ie timy)
mgum ; r3uld ahquys "voil}i with a second CLI open and only hwe a Httleé
remaining in the Amiga. It’s the same thing with t
‘t:);nnch. If the main CLI‘is being used or is hung up bgy a progrzrl,k;?l;
emecontmue to work with the second CLT window. If you inocentl
et T Copy text PRT: when working with one CLT winlow yoi
win?l ot\?/ mtuzﬁtg ethvev tel)((lt) ﬁlehisI printed or else open a second CLT
r orkbench. It’s much better
open and simply be able to continue, fohave aseiond 11

r/r*.:;u%:aDOS Can affect new CLI windows. Say you have chosen d£0 :

I t;: Ns; /w PCE.IIV?\}:Q as the current directory, then opened ancther CLi
) - New input is automatically sent to the dir

previous CLI. In our case, the current dire v Al
: . s ctory of the second i

df0:Texts/Private, you don’t need to state the new directo?yLI B

It is just as easy to enter the dimensions and position of the rew CLI

window. A small i :
corner with: CLI window can be created in the upper ieft hand

newcli con:10/10/60/60/MyCLI

It is best to enter this long line onl i

: y once using ED and savei
disk under the name NC (for NewCLI). Then thi new CLIa;?ngoon v
be called by entering: M

execute df0:nc

:.]. l l r l

e nc

187

7. AMIGADOS AND MULTITASKING

AMIGADOS INSIDE AND OUT

7.4

188

Multitasking using Run

The possibility of using NewCLI to work on many different tasks at
once is certainly a great help and time saver. We did run into a few

problems after opening four windows:

« Although the Amiga can manage moré screens at once, it’s limited
by the size of the monitor because all CLI commands work with
windows on the Workbench screen. They quickly take over the entire
screen. It isn’t acceptable to constantly click windows into the fore-

ground or background.

« Each screen requires a good portion of memory, especially on an
Amiga 500 with 512K of memory, and as more screens are added,
there is hardly any memory left to do useful work.

The Run command was created to execute many tasks at once without
needing a window for each task. With this command a new CLI is fur-
nished that comes without its own window. Let’s see how this works.
Place the Workbench disk with the CLT commands in df0. Then enter

the following two lines:

run copy df0:c/run ramic
dir df0:

Immediately after you press the <Return> key a new line appears:

[CLI 2]

and then the 1> (when more CLT processes have been started, this is a
different number). Then you entered the second line (hopefully quick
enough that the drive was still working) and the CLI displayed the
contents of the directory. This example doesn’t make t00 much sense,
but it shows the basic use for the Run command: all tasks that may
possibly have a long duration and don’t place output on the screen are
allowed to be called with Run.

While the first restriction is relatively evident—the process lasted only
a second so you can hardly type the next line fast enough—the second
restriction is not so obvious. Now a small example of two tasks that
are running at the same time, one is started with Run. Enter the follow-

ing two lines one after another:

type df0:s/Startup-sequence
run dir dfO0:

ABACUS

7.4 MULTITASKING USING RUN

At first glance everything ap i
s pears to be running normally, b
.ﬁw .W.SQoQ of df0: appears in the list of startup mmncmw.,mo %MMMMMW
aom is cmomcwn. a CLI command started with Run doesn’t havea 25“
w to use for its output. It puts all of its output in the CLT wirdow.

In spite of this restriction, there ar

1 R e many uses for multitaski i
Run. These include w:.% the CLI commands that don’t mw_m%mhmh“m
screen output and require relatively little time (Format, DiskCo f
Copy). So, for example, a text can be printed using: B

run copy Text prt:

and then further work can be done. Ami

. . ga users that have a disk dri
wwoc_a be aware that while text is printing, the disk that SMMMHMM
S_vmm%ﬂmom%a Wowwmoﬁ. be removed from the drive. The text should be
e e e disk if you want to work with another disk while

The Run command has a very i j
ry important job when you want
mmmmnma from the CLT and would like to continue wo work Q%MMWM
e required for the program to load. One option would be tostart a

new CLI wi
new with NewCLI and call the program from the second CLI

Pregram

Then you have a useless wind

ow that not only takes up space but als
memory. It i i i P the fint OL.T
meth ry. It is easier to start the desired program from the firt CLI
run program

A typical example uses the editor. For i
he editor. For example, you write a C
mO:% have to enter corrections in the program. If you are using %%vmwﬂw
oa:Ho.H MMM %cmmnwa_ﬁ%mssm wM&Sv call the compiler and then strt the
. ting the editor from a new CLT requi
space and memory. Call the editor simply with: AuiEes mofesereen

run ed program.c

After saving with <Esc>+<SA> you can call the editor again and after

the first error message, i P
you can edit the lin i i :
saves a lot of time. d e in the editor again. This

There is another restriction to Run that can have unpleasant r
WmbBamn that a program that is started with Run mwmammim mmmmmw
.EM and output f:aoim.. The output can go to already eristing
M% moim. but where can the input be entered? You’ve probably roticed
' c:vE is done in windows. Every program that needs input from the
eyboard needs a window. Input for two independent programs tirough

one window isn’t possible. How would th i i
gram the input belongs to? ¢ Amiga know which pro-

189

7. AMIGADOS AND MULTITASKING AMIGADOS INSIDE AND OUT ABACUS 7.4 MULTITASKING USING R
E G Run

Maybe we should say “That CLI commands don’t need any more Workbench 1
input”. But that is not completely true. The CLI commands allow File System 10
<Ctrl><C> or another <Ctrl> function to be input. When a program or input.device 20
CLI command is started with Run, <Ctrl><C> doesn’t go to the com- trackdisk.device §
mand, but instead to the CLI. To put it another way, you have a 30K RAM 0
text you want to display it with: CON s
run type text In this example a NewCLI is in the second position. Here a second

CLI window was opened. This window allows keyboard i
The output can be paused by pressing a key, but stopping the output by ’ o

pressing <Ctrl><C> doesn’t work. The inventors of AmigaDOS saw
this problem and built in a solution. This solution is the Break
command. Using Break, a <Ctrl><C> can be sent to commands that
were started with Run. Start the text output from the first CLI window
with:

run type text

you can enter:

break 2

to stop the text output from the second CLI, CLI 2. The complete
command is discussed in Chapter 3. It’s enough for us to show here
how to stop commands started with Run.

To close this section we want to give some of the basic differences
between NewCLI and Run. Have you created the new CLI command
Task from Chapter 9? In contrast to the Status command, the Task
command doesn’t only show the existing CLI processes, but also all of
the existing tasks in the Amiga. Every NewCLI creates a new task
with the name NewCL1I, while every task started with Run creates a
task called Background CLI. The Task command from Chapter 9
will show you all of the tasks in a short list. This could look like this
for example:

CON 5

Initial CLI 0

input.device 20

File System 10

Workbench 1

trackdisk.device 5

CON 5

Background CLI 0

An entry Background CLI appears in the last line of this example.
This command was started with Run and has no input or output
window.

CON

New CLI

CON

Initial CLI

ouvwow

190 191

7. AMIGADOS AND MULTITASKING

AMIGADOS INSIDE AND OUT

7.5

192

Using the CLI

You probably got an impression of how much time and work could be
saved by using the full range of AmigaDOS options in Sections 5.2
through 5.4. It is important that you know the different options and
their effects. You begin to leam these by working with the Workbench.
By doing this you can comfortably resolve many tasks, but you must
use the CLI to avoid long pauses when copying and formatting disks.
In addition, a CLI used in combination with the Workbench can make
many things possible that aren’t possible from the Workbench. Not
only can you see all the data files with the CLI, but you can also look
in iconless drawers. That is important when you have a disk that
doesn’t show anything on the Workbench.

As you work more with the CLT, you should plan your use of the CLI
processes. You shouldn’t use the Run command when using commands
that produce output to a window. It is extremely important to have a
second CLI window in the background at all times for security.

An especially meaningful use for multitasking with the CLI is correct
planning of the devices. That can cause drastic results if you only own
one disk drive and have only 512K, Then you must live with a few
limitations. Here you should decide which CLT commands are most
frequently used and copy these into the RAM disk. In this case you
would have the text to be printed in drive df0:, while the other CLI
processes call their commands from the RAM disk.

It isn’t possible to print text from two different disks. You must plan
ahead and have the text saved on one disk or use the RAM disk.

Users of the 1 megabyte machines have it easier. They can put impor-
tant programs and a generous amount of commands in RAM, and they
can also copy important files into RAM. Adding an additional disk
drive to an Amiga is very advantageous. Then the Workbench disk can
remain in df0: and the data can be in df1:. That way a large amount of
memory can be saved for programs.

Tt is not possible to print two data files on the printer at the same time
and make it readable. While this may be possible on the screen (start
one Type with Run and a second Type from the original CLI)
AmigaDOS prevents the output of more than one task or process
through a port (printer, RS-232).

ABACUS

75 UsiNG THE CLI

Most good word processors can pri
!) print text to a file. When a te
with all of the printer command codes is printed, it can be sentxttorgfé

printer from the CLI while the word pr i
printer from processor prints the next textto a

Long directories with many files take a long ti i

.) g time 10 be displa i
Dir. The output can be directed to a file and this file disle)ay):idol;lsgllg
screen using Type. This is much quicker than waiting for the result.

Simply enter:
run dir >ram:contents df0:c

and later, using:

type ram:contents

you can display the contents of the large ¢ directo i
) ! 1 ry v uickly,
Is very important if we don’t want to wait for the Dir ?:?rr?mandy o

A very efficient use of multitaskin i i

v g can be achieved by skilled use of
script ﬁles.' Workbench 1.3 has a very long startup seqyuence that se(:s
up the Amiga. The startup sequence we use lasts two minutes. Why

should we wait this long? Simply i is li inni
o st o this ! g ply insert this line at the beginning of

newcli

and you will have a CLI window in which t
0 work. Y| i
work before the complete startup sequence is finished. ou can begin

193

7. AMIGADOS AND MULTITASKING

AMIGADOS INSIDE AND OUT

194

ChangeTaskPri

In the last section we learned about the different ways to complet?é ttﬁ?k;
at the same time. A lot of waiting time can be sparegi that wayi.t frc;m
few problems arise that prevent the full multitasking capacity
being used. Take an example:

The ED editor is not very fast. When you want to do wor_lx;1 \g;ti};fn:;i:é
tasks, you are better off using ED. E_verythmg is don;,.x L D oty
inter\"als, one task after another. For important tasks, ; :zsxsk T i
disturbing. The Amiga operating system can order egcf. St
to a priority. Tasks with high priority are handled first,

lower priority are handled afterwards.

. . inue

Pretend that you entered text with ED apc} wz:x ati% gn:étxga:td ix(x:xopl:)t;tnant
it i i iscaseitisc

to edit it at the same time. In this case 1 ! that mportaet

i is pri minutes. It is more 1Mpo

if the text is printed after one or two m : o O omes

’ it to continue editing until the edi C

you don’t have to wait it L the e e iffer
i ake sure it’s done in g

up with the next line. Tom done in e B o changes

jorities are assigned. The ChangeTas L ch
fl?é p?i(c))?ity of the CLgI processes. This command sets the ptrlipnt); tlfxc')r
CLIptasks at a number between -128 and +127. You can see this witht

status full

and the actual information about the_ CLI processes appears. The
display for a CLI looks like the following:

: s
task 1: stk 1600, gv 150, pri © loaded as command: statu

i 0 isi i jority of our process and
i 0 is important to us. That is the priority 0

Eg 512 standard value at which all CLIs are automatically started. NOow
we’ll change this value to a 3:

changetaskpri 3

When we display the information about the process again, we get the
following notice:

: tus
task 1: stk 1600, gV 150, pri 3 loaded as command: sta

, it
We see that something has changed, the pri 3. Qur CLT has z:h ;;ng;lg
of 3. Now you may think that you will wait for‘c:.ver to alcgfassi e oo
is isn’ isi Amiga has a mu i
This isn’t the case. This is because the] gt
i k to finish before moving

i tem and does not wait for one task "
itig[:r%esyli:t. Now a task with a lower priority COmes alopgk 1an<:’ ?tlﬁoan
task with a higher priority. We can investigate this quiCkly

ABACUS

7.6 CHANGET ASKPRI

example. Create a second CLI window with NewCLI and arrange the
windows so that the first window occupies the bottom half of the screen
and the second window takes the top half. Now we want to observe the
difference in processing when they have different priorities.

Enter ChangeTaskPri -127 in the bottom window and Change-
TaskPri 127 in the top window. Now it comes down to exact stop-
ping and starting of the execution. Write the following command line
in both windows (don’t press the <Return> key!):

list df0:c

Now you must enter both commands as quickly as possible. Click the
mouse in the lower window, put the mouse in the top window, press
the <Return> key, click above and press the <Return> key again.

You can follow the different speeds that the contents of 3£0 : ¢ are
displayed. Notice that the speed difference is not much. That is not
possible because of the way the operating system is programmed As
soon as a task requires an action from the operating system and the task
waits for that action, it is placed in a waiting list and doesn’t require
any more computing time. Then the tasks with a much lower pricrity
have the chance to get in line. This is the case, for example, when a

task reads a track on a disk. It stays in the waiting list until the track is
completely read.

Despite this apparently small difference, for which we have the
programmers of the Amiga operating system to thank, you can use the

difference very drastically. Enter ChangeTaskPri 0 inCLI 1and
create a second process with:

run ed ram:difference

Press the <Return> key 20 times in the empty window of the editor so
that the cursor is inside the Editor window. Then move the CLI

window so that you can input next to the editor, Display the direciory
of d£0 : ¢ in this window with:

dir df0:c

and try to produce the cursor inside the Editor window at the same
time. You’ll notice that this is difficult and it always stops. Now we
want the work in the editor to be more important so we must change
the priorities accordingly. Leave the editor using <Esc><X> and change
the priority of the CLI to 99 (ChangeTaskPri 99). Restart the
editor (Run ED RAM:Difference) and set its priority to -99. Look
at the distribution of the priorities with Status Full. It will ook
something like this with Workbench 1.2:

task 1: stk 1600, gv 150, pri 157 loaded as command: status
task 2: stk 3200, gv 150, pri 99 loaded as command: ed

195

7. AMIGADOS AND MULTITASKING

196

AMIGADOS INSIDE AND our

Don’t let pri 157 worry you. This is really be -99. The error lies in
the 1.2 Status command. It can only show numbers from 0-255 and
the priorities have aumbers from -128 to +127. So a -99 is shown as
+157. This was corrected in Workbench 1.3. Now we want t0 80
through the same test with the changed values. Start the output of the
long directory in the CLT and try to produce the cursor in the editor.

k with ED is not hindered any more.
y when a key is
for pauses in the

You'll soon determine that the wo
The output of the filenames is stopped completel
pressed in the Editor window. ED doesn’t wait
directory, but CLI 1 waits for pauses in ED.

Now let’s put this information together:

« To work with many tasks without problems, a correct distribution
of priorities is necessary. When the less important tasks require less
time, the more important tasks are not hindered.

« The priority can be changed with ChangeTaskPri. Values
between -128 to +127 can be used. Although we used values from
+99 to -99 in our example, normally values should be set from +5
1o -5. We'll show you exactly why in the next section. In our
example the large numbers were not a problem.

o The use of ChangeTaskPri should be done correctly. Only the
priority of the CLI processes that were called from the command can
be changed. This CLI gives its priority to all “daughter processes”
(like standard input and output and current directories). The priorities
of processes started with Run can also be set to the desired value.

e The priorities can be examined using Status Full. Negative
values are displayed incorrectly in workbench 1.2. This was
corrected in Workbench 1.3.The correct value can be obtained by

subtracting 256 from the number displayed on the screen. If255 is

displayed, the difference is -1, the correct value.

o Only CLI processes can be influenced with ChangeTaskPri.lt
is not possible to change the priority of a program started from the
Workbench. In Chapter 9 we describe the new CLI command
TaskPri that can change not only the priority of programs §
from the Workbench, but of all tasks: An important help for com-
plete control over the multitasking of the Amiga.

ABACUS

7.7 WHAT 10 Warch For

7.7

What to Watch For

We mentioned at the beginni i
i ginning of this chapter that multitaski
gxlxigysl;zz :)r::pﬁ;ta‘;);l;dtvama.ges but also needs to be used c?jrtlcr:ﬁn?;
] 0 point out a few limitations an ‘
want t0 show with an example where problems are possiglg.a Eﬁteer: we

cd df0:
run dir
run list

A surprising result occurs, especi
3 specially when you have an Ami i

ggﬁae‘:lr;tseruihest; last two l}nes qgicldy and press the <Returr;g>a 15;28' g
o oy Amigs I vealnth dink n o Bl and ch
that each process can read a li0 S otign of S e, oo mefac

: ttle portion of the disk
regions that have been read are far from it et e

>] e each other, the read he
gxosl;rc(l’rgz ;rélll{s% ga}‘gl éﬁ;g; r%x(s::ncesalgh the most extreme cas:%toriltlﬁ
i s and then go back ¢t k
other process. This not onl ohi oimabidin
¢ T y wears out the machinery and
gk a;so wilastes time. Mgny times the processing ofr{wo cgm’::;
much longer than it would take to execute them one after another

Our example is not useful if the

) output occurs in one window.
gglzv lr:;ke the basxc_: phenqmepa clearer. This problem consot;t{; Scr(l)o;ele:
up ¥ CLIa c;:)rocess ‘;s fx;zargx:\hg mfonna;ion from a disk and must load the
oo mman e same disk. That happens in the following

run copy dfQ:text prt:
cd dfo0:

:Z:c;lfh (e:%l:)}:t is reading from the disk to print the Text, the CLT must
o dhe ne> hc;)dmmand (CD) from the disk. In this case the movement
O the | ead does not last very long. The use of a second drive is
the o I{ way to help here. An external drive or RAM disk will do the

. It is important that different processes do not access the same

drive. In our -
arts case we need the CLI commands in df0: and the text in

3“&2‘2’3?;2"&:‘; Oﬁiﬁr:‘/ghznrl?ultiptlﬁ processes must access one file
L . 1 ile at the same time is not a probl
m“éifha?v !:diisg tzn?jpearll)nggs a s?cond CLI and displaying thepdataeri?é
1 . g refuses to let anoth

if a program or process has o er process access afile

pened that file for writing. That is i

tant because otherwise invali ’g. at 1s impor-
the following cxample: valid data could be read. We’ll examine this in

197

7. AMIGADOS AND MULTITASKING

Attention:

198

AMIGADOS INSIDE AND OUT

copy df0:s/Startup-sequence ram:Datafile
cd ram:
copy Datafile Datafilel

Now you want t0 try to create a new file, Datafilel and at the same
time read Datafilel. Simply enter:

run type > Datafilel Datafile
type Datafilel

After a short time the message Can’t open Datafilel is displayed.
When Why is used to ask the reason for the error, AmigaDOS replies:

Last command failed because object in use

While the first Type command writes in Datafilel, the second
Type command cannot read from it. An error message also appears if a
process reads a file and then another process tries to open that file for
writing. This is the cause of the error message CLI error:Unable
to open redirection file. when the output is directed to
Datafilel while another CLI reads from it:

TYPE > Datafilel Datafile

This problem doesn’t occur very frequently, but it has a special
meaning for those that write their own programs and commands. For
example, you write a BASIC program that opens an already existing
file for reading, and then interrupt the program without closing this file.
Then no other process can access this file. Luckily, AmigaBASIC
closes all open data files when you are done working with it. A self-
written C program should not end under any circumstances without
closing all open data files.

Now we come to the last and most important point about working with
multiple processes. When you change priorities, if possible, you should
not choose a value less than -5 or greater than +5. A value greater than
+5 has a higher priority than the t rackdisk.device which is used
for controlling disk access. Programs that are not written well in regard
to priorities can interrupt the entire system. A program in a multitask-
ing system waiting list cannot be reached through loops or commands.
There are operating system routines for this that make such waiting
lists possible. Other processes come into line through these routines.
The next two examples will show this, but be sure to save all of your
important work before trying these examples.

When you try out the following two examples, you lose control over
the Amiga. Save all of your data beforehand, including the contents of
the RAM disk.

1. Set the priority of the CLI process to 50 (ChangeTaskPri 50).
Start AmigaBASIC with Run (Run AmigaBas ic). Click in the
left window and write some text in it. Press the <Return> key-

ABAcus

7.7 WHAT T0 WATCH Fog

You’ll suddenly notice that no m
i ore keyboard input is i

:%usedc(:ian be used if you are lucky. Click in a gouplg;;s\l:i]:&gh .
thanS:u enly the mouse is lost. AmigaBASIC has a higher pio ity
gan all c:kd;;rg ;aéslzsélg) wqgi(rili% Wtilm them is no longer pgssil?ltey

] i wai ectly for its results, wi ing
the wait routine of the o i i s oo wsing

perating system, these results i

The system hangs up even though there is nothing wrorl;ge ‘;:irtha:'rtl.ve‘

. You need Workbench 1.2 and the new CLT command TasiPri

from Chapter 9 for the sec i
the Deapier 3 for the e ond example. Start the Lines progam in

TaskPri Lines 50

Click in the Lines wi
indow. Now :
mouse movement is possible, no more keyboard input or

We hope that these two ;
charge by changing the examples illustrate that you can really take

. by priorities. So we advise that you w

: (0}

w1tt:11 priorities from -5 to +5 so that the important syst):em mkkonly
as they were meant to work. work

199

S.
AmigaDOS
Internals

ABACUS

8. AMIGADOS INTERNALS

8.

Global
Vector Table

AmigaDOS Internals

It'’s fun to work with the CLI, but it’s even more interesting to see
how the CLI and AmigaDOS really function. It’s especially useful if
you want to write your own programs. You can add some tips and
tricks to your own programs that you learned from examining existing
CLI commands. We’ll now discuss the internal functions tha we
discovered. Much of this information cannot be found in any other
book, such as a description of the internal construction of the CLT
commangds and their use of the Global Vector Table. These global
vectors provide mysterious “gv 150” after a Status Full command,

This book doesn’t provide complete information about the Amiga—that
would require many volumes. We don’t cover tasks and their structures,
message ports, etc.; we just mention them briefly. We want to give
you the most interesting information about AmigaDOS.

To understand and use all of the information in this chapter, you should
be familiar with the C programming language and 68000 machine
language. We'll try to present the information so that an Amiga user
without experience in these programming languages can get at least
some idea of what’s happening.

203

8. AMIGADOS INTERNALS

AMIGADOS INSIDE AND OUT

8.1

DOS and
files

DOSPackets How is DOS notified by a device? F
include file dosextens.h contains the exact method. The dp_Type
d as a number here.

the include file. Fpt

204

DOS, Devices, Handler,
Packets

Maybe you’ve wondered how AmigaDOS really functions. For exam-
ple, maybe you have pondered how the same file can be sent to a disk,
the RAM disk or a printer. In this section we want to explain how this
occurs and what the devices and handlers have to do with this.

Say you want to open a file for reading. You would use the Open ()

function of the DOS.library, which requires two parameters: the
filename and type of access (read/write). DOS then looks for the file-
name and tries to open the file. The following special filename cases

should be noted:

« The filename is *. In this case DOS makes sure that the input/output
goes to the actual CLI window. This means that the message port of
the Con handler is used for the input/output message port.

« The filename NIL. No routine exists for input or output. Nothing is
displayed when Read () or Write () calls are made.

« The filename contains a colon (:). AmigaDOS checks to see if the
device preceding the colon is in the device list. A disk device
(df0:,df1:, etc.) must also be present in a disk drive. When this is

the case, the message port of this device opens for later input and
output. The handler for this device is loaded and started if it isn’t in

memory.

A volume name (e.g., Workbench 1.2) can also precede the colon if this
device or volume isn’t found. In this case AmigaDOS uses a requester
10 ask that this volume be placed in any drive.

When an access with Read () is made to the opened file, AmigaDOS

checks in an internal buffer to see if the characters are there. If no char-
acters are present in the buffer DOS sends a message requesting that the
buffer be filled with data. AmigaDOS doesn’t access the disk directly,
but demands the data from the device. Many other actions of DOS really
occur with the device, for example, renaming the disk, renaming files of

directories, building a new directory and so forth.

entry is important because the desired action is store
The possible actions and their numbers are found in
example, if DOS wants to rename a disk, then a packet is sent Wi

dp_Type = Rename_disk (=9) to the device and waits for the Reply

or this DOSPackets are used. The

ABAcus

Devices and
Handlers

8.1 DOS, DEVICES, HANDLER, PACKETS

packet, the answer of the device. Then DOS ine i
renaming took place or if an error was encountenad? a0 determite If the

Up until now we’ve said that DOS i
C e said th communicates with i
%ih‘z:,r;gﬁs mfonn;t{on in this manner. This was incorrect iz g::;c;;:;
] ave used it temporarily. To be more accurate, D
Eamly wu_h devices and hgindlers, and DOS usually wo’rks Ooﬁl wgvr'lt(rsl
ust:;(;efspetchuve h_andler. Amiga ports are handlers. The Port han}clilerli
usec or the senall and parallel ports, the Con handler for keyboard ang
s gln and the FileSystem for the disks. A device belongs to eve
tharne ! e:l :nfl uses the port for connection. The Port handler warks eru);
vices: parallel.device, printer.devi

. . . > : vi
sedrlal.dev.Lce, thg FileSystem with trackdisk dg;aiz.nd
and the Con handler with the the console.device. . e,

Basically a device is closer to hardw
are level than the respective h
?:c:hcan qnly execute much simpler actions. We see thi?,e;or exaagdller
FileSl?:.leSyst:em“(h_andler) and trackdisk.device. 'glfe,
L : m}gs tt:re;n l}xcsgs. akl:;gher” disk structure (files and directories)
ckdisk.device works much “deeper” (track i
;fg;(‘)rls))blsn oDué Sexlganmple twhe want to Read () afile It)heat VS/asco;e:neg
. ows that no valid data is present in its buf
?gnds ; packet to the_ respective FileSystem and asks for rggrge;:arl;
Secr:a ype = Actlon_rgad). The FileSystem knows which
s rs contain the next.vahd data of this file. After that it checks if
sezstg rsses‘t/gxfz lin'e preger!t in the buffer list. (The buffer holds a number of
t 1ch can be increased with AddBuffers). It picks
desired data from the buffer and copies it into the given)Dog buff:rl.) e

:Z:ftr:) ttl;; data is not in the buffer of the FileSystem a message is

o oabe ;?Spe;‘:twe t 'rackdlsk .device which reads these sectors

into the bu elxg‘oI Lfl:le FlleSysterEz. The trackdisk.device reads

on ot Wha:x th t first looks to see if the desired sectors are in the track

buffer.and ¢ tll15 is the case, the‘sectors are copied out of the track

o into the buffer of the FileSystem. Otherwise it prepares
e track on which the sectors are found and reads them into menory.

Accessing the disk data uses many stations (DOS, Fil
gl;:;ntgler), trackdisk.device, disk hardware(), and,each s?afigns ;l?er:
anot er step towards the actugl hardware. This is why disk access on the
A gais so slow. Every station stores something in between, szarches
ough its buffer for the desired data, and sends information © other
tasks. There are more reasons for the slow disk access speed, for
teli(arfnple the manner of distribution of data on the disk and the fact that
e features of the Amlgz.a hardware are not used to full advantage by the
trackdisk.device (index synchronization).

There is one exception in this task distributi i
i stribution (DOS, handler, device,
lhza}{g;vareg‘tge RAM disk of Version 1.2. For there is only one task,
P wanlc functions as a handler as well as a device, but does not
ppo! possible actions. The 1.2 RAM disk cannot be formaited for

205

AMIGADOS INSIDE AND out

8. AMIGADOS INTERNALS

206

i . that isn’t erased
n 1.3 has the RAM disk named RAD:
when the computer is reset. This consists of a_RAM haqdler arrlxgh?:ﬁ
ramdrive.device. With this new construction zil actions
ing formatting) can be executed by the new RAM dis

example. Versio

The handlers are found in directory 1 and the devices in devs.

ABACUS

8.2 RELOCATIBLE PROGRAMS, SEGMENTS, BPTR FOINTER

8.2

Relocatible
Programs

Segments

Relocatible Programs,
Segments, BPTR Pointer

Because the Amiga has a multitasking operating system, the addresses
where programs are loaded are not fixed. Otherwise a second program
could not be loaded while another program was in its memory bcation.
AmigaDOS searches for a large enough section of memory before it
loads a program and fits all of the addresses in this memory sestion. A
programmer doesn’t usually have to worry about this becausz the C
compiler or assembler stores the necessary information on disk. Trying
to debug a program that always loads to a different address can be
confusing. When a program is loaded and examined with a manitor or
debugger, it’s in a different position the next time it’s loaded. This fact
makes the absolute address location useless.

A great help for debugging programs and the Amiga operating system
is the AssemPro assembler from Abacus. It contains a good assem-
bler, debugger and a reassembler. What’s the advantage of this system?
‘When you load a program into the debugger you can create a source file
with the reassembler. You can then comment this source code for your
own purposes. In most cases AssemPro can translate from the assem-
bler into a running program.

The Amiga operating system allows multiple programs to rua at the
same time, which can cause a few difficulties with the free memory.
This free memory doesn’t lie in one piece (segment), but i1 many
pieces between the sections that are taken up by programs. There can be
S00K free, but if the largest section is 80K, a 90K program could not
normally be loaded. The operating system controls this and places the
program in many small segments. This allows the program to be stored
in small memory sections and the sections to be built into a running
program. Here again AmigaDOS is careful that the addresses of the
single program section fits in the proper position of the segment. The
basic division into segments happens with the help of a compiler or
assembler.

AmigaDOS links the individual segments for each program to be
loaded. Two long words (BPTR pointer) are placed before each segment.
This long word points to the address of the next segment. With the help
of this segment list it’s possible to find all the sections of a program in
memory and to reconstruct them into the source code with the help of a
reassembler,

207

8. AMIGADOS INTERNALS

AMIGADOS INSIDE AND OUT

BPTR pointer C programs, include files or documentation of the Amiga operating

208

system always contain the mysterious BPTR pointer. The BPTR
p):)inter is ba)s’ically the invention of Am_igaDOS in BCPL. In‘C a
pointer indicates the direct memory location where the object_ is. A
BPTR pointer is such a pointer divided by four. The BPTR points to
2500 if a pointer indicates an object at memory location 10000. This
way no information is lost because the B_P"I'R points only to objects
that are at a long word address. When you divide sgch an_address by four
and then multiply by four again, the same address is received.

You want to make this concept concrete by using an example. When
you have a segment list that ties the var@ous segments of a program
together, the pointer for the next segment 1s a BPTR pointer. Segments
can only lie at long word addresses. To get the correct address from the
BPTR pointer you must multiply the value by four.

ABACUS

8.3 THe CLI PRRoGrAM

CLI
program
structure

COS & CIS

The Run
command

The CLI Program

Although we mostly speak about the CLI as a user interface ncluding
the CLI window and CLI programs in drawer C:, there is alo a CLI
program, which is the starting program for this user interfice. It is
found either in the System drawer or directly in the main dirctory of
the Workbench disk.

The CLI program is written in C, unlike most of the otler CLT
commands. Looking at the structure of this program, you can e that it
has astonishingly few tasks.

The beginning contains the usual introduction that every C program
has. It’s first tested to see if the program was started from the Work-
bench or the CLI. The command line is analyzed and split apart into
the parameters if it was started from the CLI.

The actual Main () program tests to see if a CLI window already
exists. If is does not, 10000 bytes of memory are reserved, th: prompt
becomes $N>, and the actual directory is set to SYS:

In each case a window is opened. This is done by the DOS function
Open () and is assigned the name Con:0/50/640/80 /¥ewCLI
window.

Then the DOS function Execute is called. This requires thre: param-
eters: a command string, and an input and output handle. A null is
assigned to the string, a null is assigned to the output handle and the
opened CON window is assigned to the input handle. Execute sets
CIs (Command Input Stream) and COS (Command QOutput Sream) to
the assigned file handle, loads and starts the CLI command ¢ :Run.
This reads input from the CON window, executes the commind, and
writes the results to the CON window until an EndCLI is enter:d. Then
CIS and COS are restored and Execute returns,

The CLI program then closes the window, frees the memory and ends,
You may have noticed that the CLI program does very little. Tie actual
work is finished with the CLT command Run. Even more surjrising is
the fact that the CLI program is not capable of running wihout the
CLI command Run. We can easily show this by an example:

Create a c directory on the RAM disk and copy only the 2ssign
command into this directory. Set ¢ : to ram:c with the folloving.

209

8. AMIGADOS INTERNALS

210

AMIGADOS INSIDE AND OUT

makedir ram:c
copy sys:c/assign to ram:c
assign c: ram:c

Now start the CLI program from the Workbench. The CON window
appears shortly, but then it disappears again. That is because c: run
was not found. Do not erase the ¢ : Run command from the Workbench
disk. Re-assign the C directory with the following:

assign c: sys:c

With this knowledge about the functions of the CLI program it is very
simple to write your own CLI program. The important points are:

 Open a CON window

« Call the DOS function Execute with three parameters:
a 0 for the Execute string in D1
the CON window for Input handle in D2
a 0 for Output handle in D3

« Close the CON window

The important machine language commands (not a complete program)
look like this:

OpenCliWindow -
OpenCliWindow:PEA $3ED ; Mode: Old_File

PEA conwindow "CON:0/50/640/80/New Cli Window
JSR call_Open calling DOS-Function OPEN
MOVE.L DO, D2 Filehandle from Open “CON:"
ADDQ.L #8,A7 Stack restoring

BEQ LC2C47E Open error -> no Execute

H

~ ™

~

. .

ne we

CLR.L ~ (A7) = Qutputhandle
MOVE.L D2,-(A7) ; = Inputhandle
PEA executestring $C2B8CO = 0

loads "C:RUN"
assigns CIS and COS
3 Unload"RUN“,CIS/COSrestoration

~

JSR call_Execute

~

RTS

conwindow: dc.b wCON:0/50/640/80/Mein C1i Window™, 0
executestring: dec.b 0,0,0,0

As we said, the program is not complete because the DOS library must
be opened beforehand. But this example does point out that it is very
easy to write your own CLI program. Unfortunately complete control
is assigned to C :Run and we can only wait until Run reads EndCLI
as a command and returns control.

ABAcCuUs

8.4 INTERNALS OF THE DOS LiBrary

Internals of the DOS Library

Have you ever examined a C program with a disassembler or wriiten

your own machine langua Vi .
hould look familiars o & Program? If so the following commands

MOVE.L Pointer for library,As$
JSR OFFSET (A6}

TST.L DO

BEQ Error

grx:n %2an‘1)z(a)rl\(datse;qg§r;ce calls %e routines of the operating system
. command like Run. The i
acall. Instead the following command sequence enrxzrgc):' can'tfind sich

IC188E8:MOVE.L D1,D6
ADDI.L #$32,D1
SUBA.L AQ,AQ
MOVE.L $74(A2),A4

¢ save number GLOBAL VECTORS (=$95)
address $32 for AllocMem (=$C7)
¢ sets AO to O

= Allocate Memory (MEMF_PUBLIC)

(length=
MOVEQ #5C, DO gth=D1),Return BPTR(D1)

g:? éAgi ; AllocateMem

. ; memory ¢

BRI 1e189DE ; me _)yengntents for Vector table?
ADD.L #$32,D1 ;s yes, further

Don’t worry if you don’t understand all the comments. This is only a

small section of the .
interesting; CLI command Run. The following commands are

MOVE.L OFFSET (A2),A4
JSR (AS)
TIST.L D1

What’s interesting is that i
> it you find different offsets every ti
is’l:&p;zgratr: 1:1 clq{)led with JSR(A5). Here the CLI crgmrx::ngfrsea::ﬁ
i internal library. The basic address of the library mi
asic. ust be stored
1thn‘A2, tt}e addr;:ss of the routine in A4, and the subregl):ﬁne in AS c;fls
1s routine. This has two interesting consequences:

CLI commands are relatively short and
than a comparable C pmgmmy compact, always shorter

CLI commands need more information th

; an a C program. For
example, the address of the internal library. Because glisgaddress is
ng;tzzs;fned from the Workbench, CLI commands cannot be
s om the Workbench without help. For example, if you give

211

8. AMIGADOS INTERNALS

212

AMIGADOS INSIDE AND OUT

the Run command an icon and then double-click on this icon from
the Workbench, you would get aGuru Meditat ion.

How do CLT commands work with the Global Vector Table? The next
section will go into more detail, but for now the following is interest-
ing: Most CL.T commands copy the Table into a free memory area at
the beginning and later add some routines there. So every CLI com-
mand has its own table, The standard table contains $96 entries ($00-
$95), see the comments in the first line of the previous program
section.

Have you ever used the Status Full command, which displays
important information?

status full
task 1: stk 3200, gv 150, pro 0 loaded as command: status

Here the mysterious entry gv appears. It usually has a value of 150.
That is the decimal value for $96. GV displays the size of each process
Global Vector Table. It is questionable as to why this value is shown
because it is rather uninteresting for users and up until now we have not
found any information about this table. This table is usually called the
Global Vector Table because it holds all CLT processes as ordered.

The section of the Run program that you printed is the preparation for
copying this table. The important memory allocations for this is also
found here.

The CLT commands get more information from the processor register.
There important variables can be accessed without large computing
costs. Our investigations have revealed the following contents:

DO Number of parameter characters in the command line
D2 Size of the program stack

AO Pointer for parameter characters

A2 Pointer for internal DOS library

AS Pointer for routine to call the functions

A6 Pointer for return routine

For example, if the Run command was called without any parameters
(like the DOS function Execute does), the register assignment would
look like this:

ABACUS

BPTR

8.4 INTERNALS OF THE DOS LIBRARY

Example-Register

H

; DO = 00000001 -> Only command name "Run"

; D1 = OOCS5AATC

; D2 = 00000FAQ = 4000 = Program stack for calling CLI
; D3 = OOCOOFA8

; D4 = 00000001 -> length of the parameter strings ?

; D5 = 0000003E

; D6 = 00309107

; D7 = O0C5A794

; A0 = 00C27411 -> Pointer:l Parameter after "run" (OLOA)
; A2 = 00CO04CAO0 -> Pointer for DOS-Library

; A3 = 00CéFr52C

; A4 = OOC6BB4S

; A5 = OOFF44B4

; A6 = OOFF44A8 -> Routine that ends the function call

; A7 = 00C721C4 ~> return address

It’s interesting how the parameter string is stored. This isn’t done by
the usx_lal C convention (character string concluded by null), but istead
the string length is in the first byte and then the characters follow. The
assigned string in our example reads:

$01,$0A (1 character, and then a linefeed)
Pointers for the strings are known as BPTR. BPTR are pointers that
must be multiplied by four before they are used.

We believe that you can use the Global Vector Table with your routines
for some C commands with no problems, as long as you handle the
existing CL.I commands in the conventional method. Here Comnodore
can hardly make a change, because all of the CLI commands that are
supplied would no longer function.

213

8. AMIGADOS INTERNALS

AMIGADOS INSIDE AND OUT

214

The Run Command

In this section we want to look at the Run command. We can show
more about how the DOS commands are built with this example. We
are especially interested in how vectors can be entered in the copy of the
Global Vector Table (GVT). There is a completed routine in the GVT
for this. It is easier to analyze other CLI commands, by doing this
maybe we can find some tricks to put in our Own programs.

Basically, most CLI commands are in two segments (see Section 8.1).
In the first segment the preparation for the actual running of the

program is done:

« First a loop checks all the segments of the program for the size of
the Global Vector Table (GVT). The last long word in the segment
contains this size. The minimum value is #$95 = 149 because the
table contains 150 vectors. If this check finds a higher value, it
reserves the necessary size.

« Then the necessary memory is prepared for the table. #$32 long
words are added for this and this memory is set aside using
AllocMem.

o The GVT is copied into the free memory from ROM. An internal
routine of the DOS library is used for this

MOVE.L $70(A2),Ad ; = Fill in a Global Vector Table

MOVEQ #$C,DO
JSR (A5) ; Fill the table

This is called twice because the GVT is stored in two different places.
The 15 long words are copied into the free memory from the CLI
structure of the actual tasks. This structure is in the GVT at $218 and
occupies the same place in the new table. Now this routine is called for
the second segment of the same program. The routine “fill in Global
Vector Table” waits in D1 for a BPTR from the segment list of the
program and returns a -1 if everything is OK, otherwise it returns a 0.

The construction of the segment must be as follows: The last long
word of the segment contains the maximum size of the table. This 1S
also the largest possible vector number. Before that is the offset of the
entered Vector and before that the Vector number. An offset of null ends
this operation. The end of the second segment of Run looks like this:

$00000000 $00000001 $00000024 500000096
End Vector # Offset Max. table size

ABACUS

8.4 THE RuN CoMMAND

In this case Vector 1 was entered, the addr i

I A ess of the respecti

tine begins at segment 2+$24 and the following soo%egoggosﬁ"f;'

Sffseg ends this segment. Because no more segments exist, the routj .
Fill in a Global Vector Table” ends. outine

e Vector 1 is overwritten by the address of a routin is i
segment gnd cannot be entered from the copy rouetirc:I tmliol rtlh?etaft;ulzt
This routine frees up the memory of the newly placed Vector Table:
and equ the CLI cgmmand. After closing the command, the Vectg
Null is called. This points to the program start of the secon;
segment so that the program section stored there is processed. Th
]::ou%;a;n code of ttl:e second segment starts and a null doesn’t appe;

eginning, but at $24 because
starts before that. That looks like thist? ® name of the CL. connand

.
7 -

; RUN Segment 2

Offset: $00

LOOC1A610:DC.B $30,539 ; "o9v
DC.B $11,$52,555, $4E s ".RUN"
DC.B $20,$20,%20,%20

DC.B $20,$20,%20,%20

DC.B $20,$20,520,520

DC.B $20,$20,5%500,%00 H

DC.B $07,$73,574,361 ;si?;:ig
DC.B $72,5%74 ; "rt®

The code for Vector 0 of the Run command i i i
¢ [is $04 in Version 1.3. Th
gofst important routine of Vector 0 like the CLT program is veryshorz
eforehand important preparation takes place, like calling Input ()
Output () and AllocMen () . The fixed portion looks like this

LC1A860:MOVE.L $3C(Al),$68(Al)

LEA $3F4(A4),A3

gg;ELL A3,D4 ;get pointer for TASK NODE names

Mové L#2,D4 ;BPTR: TASK NODE names in pointer

e .L $34(Al),D3 ;get priorities of the processes

MOXE.L #$320,D2 islze of the stacks in long words
E.L $20(Al),D1 ;BPRT from segment list for process

MOVEQ #$58,D0

MOVE.L $84(A2) ,A4 ;Create a Process

: D1 = BPTR to SegList array for process
: D2 = Stack for process in long word

; D3 = Priority of Process

H D4 = BPTIR to task

isr sy node name

22¥E.L D1, $1C(Al) ; Pointer for process Message Port
BNE.; D1 ? was process furnished?

.S LC1A892 s No=-> "Can't Create Background

Task"

BRA.L LC1A9CO ; yes, further, free up memory, End!

215

8. AMIGADOS INTERNALS

Background
Task

216

AMIGADOS INSIDE AND OUT

In reality, the CLI command Run furnishes a new task with the name
Background Task that you can examine it if you have used the Task
command.

We hope this information has helped you understand the CLT com-
mands. We hope that through this knowledge you will understand the
efficiency and capabilites of the AmigaDOS and use the commands in
your OWR programs. We know that with commands like Assign and
AddBuffers better commands can be created that will make work
with AmigaDOS and the CLI even easier and more efficient for the
average user.

9.
Creating CLI
Commands

ABACUS

9. CREATING CLI COMMANDs

9.

The c:
directory

Creating CLI Commands

The Amiga operating system has so many possibilities that it’s impos-
sible to mention all of them. New libraries can be created and by adding
additional devices, new hardware can be added. Because the CLI com-
mands are not integrated into the operating system but instead ar¢ small
programs on the Workbench disk, you can add new commands. As a
CLI expert, you have to look in the ¢ directory on the Workbench disk
for the CLI commands. DOS searches for commands in the current
directory and as a last resort it looks in the ¢ directory. When the
computer is turned on, this directory is assigned to drawer c of the
Workbench disk. Each CLI command can be found this way.

The number of commands is not limited or set. You can copy your
favorite CLI command under as many different names as you want until
the disk full requester appears. A somewhat limited use for this capa-
bility is to store frequently used commands under a different, shorter
name. Example: X for Execute, FC for FileCopy, etc. It's also
possible to put user-defined commands into the ¢ drawer. Since a
command is basically nothing more than a short program, the clock can
be copied here. When the output from the List command is viewed for
the ¢ directory, the clock program stands out because of its high
memory requirements. The most frequently used CLI commands have
one thing in common: They are relatively short and can be loadsd into
memory rather quickly. Such compact code, like that of a true CLI
command, can usually only be created by using an assembler. The
language the commands were written in is BCPL, which most people
don’t have for their Amiga. The C language is an alternative. It was
derived from BCPL and a large portion of the Amiga operating system
was programmed with it. When creating new commands you should
stick to a particular programming style. You should at least pay atten-
tion to the following items:

1. Al CLI commands are “non-interactive”. That means that they
don’t require information from the user once they are started. The
command must be called with all of the correct parameters in a list
after the comumand.

2. The commands normally output their information in the same CLI
window from which they were called. A command should not open
its own window for output.

3. True CLI commands contain an argument template that can be
activated by entering the command, a space and a question mark.
Should the user enter a false parameter, it responds with i fitting
remark. Example:

219

AMIGADOS INSIDE AND OUT

9. CREATING CLI COMMANDS

220

a) Argument template

Input: date ?
Output: TIME,DATE,TO=VER/K:

b) Bad arguments

Input: date birthday

Output:

**%x Bad args

use Dg—MMIv?—YY or <dayname> Or yesterday etc. to

set date '
HH:MM:SS or HH:MMto get time

ABACUS

9.1 CLI COMMAND IN C

CLI Commands in C

A command written in C and a CLI command cannot be told wpart if
the programming is done correctly. It’s also possible to pass the jaram-
eters directly in the C programming language. The greater-than chiracter
allows redirection of the output.

The input line should be read over to make sure that the user entered the
correct parameters. When a user enters just any parameters, this shows
his unfamiliarity with the purpose of the command. In this cze the
Bad args message should appear.

The input line evaluation is programmed in C as follows:

The first main function receives the input data in the form o two
parameters: The first parameter, which is called ArgC (from Argiment
Counter), is of type Int and contains the number of assignedargu-
ments. The name of the program becomes one of these argument. The
second parameter usually has the name ArgV (for Argument Vecior). It
must be declared as a field of type Char. The elements of this field
contain pointers for the character strings of the input line, whch is
ended with a null,

This task is not completed from the CLI as you might think. The first
line of the main function might look like this:

main(arge, argv)
int argc:

char *argvl];

{

Because ArgC and ArgV were assigned outside the main function, you
must declare them as parameters of the desired type before the furction
bracket.

A brief example should familiarize yourself with this programming
technique. We compiled all C programs with an Aztec C® compiler.
Using other compilers should not present a problem, if you pay aten-
tion to the instruction in the compiler manual. (Use —1m —1c 0p10ns
to link.

/* Program: Evaluation */
main(argc, argv)
int arge:
char *argv{l:
{
int i;

221

9. CREATING CLI COMMANDS

222

AMIGADOS INSIDE AND OUT

printf (" Quantity: %d \n",1, argc):
for (1 = 0; 1 < argcy 1i++)

printf (" Nr.: %d, Argument: %s \n",i , argviil):;

}
}

This program is called from the CLI using:

Evaluation one and another parameter

The following output is received:

Quantity: 5
Nr.: O , Argument: Evaluation
Nr.: 1 , Argument: one
Nr.: 2 , Argument: and
Nr.: 3 , Argument: another
Nr.: 4 , Argument: Parameter

A space in the input is interpreted as a separator. How can you assign
parameters to a C program from the CLI if the text contains spaces?
The simplest method is used very often: The text must be in quotation
marks to obtain the desired resuit. Call our example program with the

following:

Evaluation ™one and ancther parameter™

‘Which has the result:
Quantity: 2

Nr.: O , Argument: Evaluation
Nr.: 1 , Argument: one and another parameter

Until now that's all that the parameter assignment had to do with CLI
commands. Now you could ask the question, are the > and < characters
interpreted as completely normal characters in our program, or couldn’t
the input or output be directed to any device? A test:

Enter the command:
Evaluation >df0:Datafile parameter

the output is written (directed) to the desired file (Datafile). Thefile
contains:

Quantity: 2

Nr.: 0 , Arqument: Evaluation
Nr.: 1 , Argument: parameter

ABAcCuyUs

9.1 CLI ComMinDs IN C

Trying to redirect the output usin

,] it using the < character fails,

g%e;n tlt1 pz;y attention to w}uch Input device is active, but-i::dzotrhng lllitrfr
e keyboard. In spite of this it is still possible to reeive dat:

from other devi i
this: vices. The following example program shows tow to do

/* Redirectinput test
rogram *
#include <stdio.h> pros ’
FILE * Input(); /* De
main (aron arg;) claration of an external funccion */
int arge;
char *argv(];
{
int 4;
char Reader;
FILE *Infile;
char buffer[100];
long Length;
printf (" Number of Parameters:
for (1 =0; {1 < argc; i++)
printf (" Argument: %s "
Infile = Input(); \e arevith
Reader = Read (Infile
. &buffer
buffer [lLength] = 0; 101, 300
printf (" Read: $%s\n", sbuffer(0]);

/* Pointer for Structure-Type FILE */

%d \n", argc);

}

A small input data file can be created using:

echo >datafile "one two three™

and the above program named redirectinput is started by 1sing:
Redirectinput: <datafile hello there

will output

Number of Parameters: 3

Argument: redirectinput
Argument: hello
Argument: there

Read: one two three

The function from ArgC to ArgV remains unchanged. The <daafile is

completely i i
threef arguZn egnr:;red and that is why ArgC confirms the presenceof only

After the output of the normal
er U ! mal parameters, the Input () function,
which is found in the DOS library, prepares the standard input levices

of the called pro:
tasks of the v a?iabglz im aréfllso those of the CLI) for our progran. The

223

9, CREATING CLI COMMANDS

224

AMIGADOS INSIDE AND OUT

Infile: Pointer for standard input
Buffer: Contains the characters that are read
Length: Actual number of characters read

Using the < command in the CLI command line switches the standard
input device to the given device.

ABACUS

92 Task

9.2

The Task
command

Start
address

Task

You have probably wanted to know what the Amiga really does when
you don’t give it any tasks. There is the Status command, butthis
command shows only the CLI processes and their tasks and not
programs that were started from the Workbench or the internal activities
of the Amiga. It would be better if you could see which tasks the
Amiga really executed internally. With this information you could
influence these tasks. To do this we have created two new (LI
commands: Task, which notifies you of tasks, and Taskpri, wiich
allows you to influence these tasks. We’ll begin with Task. This
command notifies you of not only active tasks, but also gives heir
priorities.

Before we give the Task command as a C program, we want to give
you some basic information about its functions. The Amiga ha an
operating system that uses totally relocatable programs. No address is
certain; every program can be placed at any location. Relocatible pro-
grams can be loaded into any address. There is one permanent addess,
and that is the start address of Execbase. This is the start address of
the basic table of the Amiga operating system and the address is alvays
at memory location $000004. Only the address of Execbase is stred
here. This is a different location for an Amiga 500 with memory expan-
sion than it is for an Amiga without one. Inside of Execbase there
are many important pointers for all devices, libraries, etc. It also
contains the address of the list where the tasks are managed. Basiclly,
there are three status possibilities for each task:

Running The task is active and being executed

Ready The task can be worked on next

Waiting The task is waiting for a call and cannot be executed unil it
is called

There is only one task in the Running condition, while many ca be
Ready or Waiting. If a call comes for a task in the waiting list,it’s
automatically placed in the Ready list. The construction of this list is
not simple and we won’t get into it in this book. It isn’t completely
true when we say that Task shows all tasks. It displays only thos in
the Waiting list. That is hardly a limitation because only one taskcan
be Running and several more tasks Ready. Should you be interested in
more information, look in Amiga System Programmer’s Giide
by Abacus. The following is a program for the new CLI command
name Task.

#include <exec/types.h>

#include <exec/execbase.h>
#include <exec/tasks,h>

125

9, CREATING CLI COMMANDS

How the
program
works

The Strncpy
Sfunction

226

AMIGADOS INSIDE AND OUT

#include <exec/exec.h>

#include <exec/execname.h>
#include <exec/lists.h>

extern struct ExecBase *SysBase;
main()

{
struct Task *task;

char *names [201;
int pri (20};

int count,i;
count = C;

Disable();
for (task = (struct Task *)SysBase->TaskWait.lh_Head;

task->tc_Node.ln_Succi
/* End, when the pointer for the next entry = 0 */
task = (struct Task *)task->tc_Node,ln_Succ)

{
names [count] = task->tc_Node,ln Name;

prilcount++] = task->tc_Node.ln_ Pri;
}

Enable():
for (1 = 0; 1 < count; 1++4)

{
printf ("$s",names (1]}

printf ("\r\t\t\t%d\n“,pri[i]);

}

First, all important header files are included into the source file and a
pointer with the name SysBase is defined, it points to Execbase.
Now the important variables must be defined. You need a pointer for
the structure Task. You don’t need to worry about searching for the
structure because it's already present in the task list. Because the
contents of this Task structure can be changed, you can’t directly
display the names on the screen, but instead the address must be entered
in its own field. The Disable () function is useful for disabling task
switching. From this point on do not change the active task and the
list. Go through the list until you establish its end.

task->tc_Node.ln_Succi /* End, if pointer for next entry = o */

Then use Enable () to turn the task switching back on and display
the list. Take the chance that a name in the list has changed in the
meantime, because you only saved the pointer for this name. You must
save the name with the copy function Strncpy. The maximum
number of entries for this program is 20, and this is sufficient in most

cases.

Started from a third CLI, the eutput of our program looks like the
following, your display will differ:

ABACUS

Background
CLI

9.2 Tasx

Background CLI
CON

CON

New CLI

New CLI
Workbench

File System
input.device
trackdisk.device
File System
trackdisk.device
CON

[

-
Mwouvoormoouwwmo

Th

proegr t:snllc ur':ﬁ:% Background CLI is responsible for the TextPro
program in th ase, It was starte_d from the CLT using Run. The three
Son tasks e care of window input and output. The Nev}CLI task
fomagls CLT 1;{n'ocdesses sta_mj,d with NewCLI. The Worktench also
The names £ Lo 575t co and b rosty ot the Amiga has o finih,

S . : sk.devi i

for each disk drive, they will appear twice if youeo;: etw‘zlclilistfdrfig:asmd

227

9. CrEATING CLI COMMANDS

AMIGADOS INSIDE AND OUT

228

TaskPri

This new command is an extension of the ChangeTaskPri
command discussed in Section 7.6. TaskPri is capable of more: A
disadvantage of ChangeTaskPri is that only the priority of the
actual CLI can be changed. It cannot change the priority of another
CLI.TaskPri makes it possible to manipulate not only the priority
of any process but to manipulate any task displayed by the Task
command. Because this command needs input from the user (the name
and new priority of a task), it's quite large. Here is the C listing for our
new CLI command (ChangeTaskPri.C):

#include <exec/types.h>
#include <exec/execbase.h>
#include <exec/tasks.h>
#include <exec/exec.h>
#include <exec/execname.h>
#include <exec/lists.h>
extern struct ExecBase *SysBase;
long FindTask{):
int settaskpri():;
main{arge, argv)
int arge;
char *argvlil;
{
struct Task *MyTask:
long pri;
int result;
char oldpri;
long task;
pri = OL;
if (argc != 3)
{
printf (" Task name priority\n"):
exit (FALSE);
}
result = Value(argv(2], é&pri):
if (result == FALSE)
{
printf ("Not in range!\n");
printf (" 128 <= Taskpri <= 127 : %ld\n", pri);
exit (FALSE) :
}
task = FindTask (argv[1]):
if (task == 0)
{
printf ("Task <%s> not found !\n", argvil]):
exit (FALSE) ;
}

ABACuUS

93 TASKPRI

oldpri = (char) SetTaskPri (task, pri);

printf ("0ld Pri :
et ority was: $d new is $1ld\n", oldpri,

exit (TRUE);

}

/* Up to three numbers 0 - 255 */
Value(string, value)
char *string;
long *value;
{
int 4;
int numdigits;
char sign:
int numeral;

int tens:;

tens = 1;

numdigits = 0;

if :*string == '=') /* negative number */
tens = -1; /* change to negative number */

ftring++; /* overlook minus sign */
for (1 =1; 1 <= 4; i++) /* number of digits */
if (*string == 0)
break;
string++;
numdigits++;
}
if ((numdigits == 0) {| (numdigits > 3))

/* only 3 digits
return (FALSE); d wre aitowd #/
for((i = numdigits; 1 > 0; {~-) /* create nunber */

string--;
sign = *string; /* read string back */
if (sign < '0* Il sign > '91)
return (FALSE);
numeral = sign - 'Q';

*value = *value + numeral * tens;
tens = tens * 10;
}

if (*value < -128 || *value > 127)
return (FALSE);

return (TRUE);

}

229

9. CREATING CLI COMMANDS

How the
program
works

The
SetTaskPri()
function

The Value()
Sfunction

Using the
program

230

AMIGADOS INSIDE AND OuT

The first seven lines set up the task of the program. After that the
external function FindTask (), which is found in the Exec library,
is declared. Its job is to look in the task list for an entry whose name
has been entered on the command line. The function must be given a
pointer for the name to find. A pointer to the correct file is returned as a
result if the file is found. Unlike many other functions on the Amiga,
the FindTask function requires the correct use of upper case and lower
case letters. FindTask doesn’t find a task if it isn’t entered exactly as
it appears in the output of the Task command.

In this program, when multiple tasks have the same name, the pointer
for the first one is returned and that is all. This problem can be solved,
but would require a large amount of programming time fixing it.

The SetTaskPri () function is declared as the second external func-
tion. The name describes what the function does: The priority of a task
can be set to any new value. The function needs the new priority and
the structure pointer returned by FindTask as a parameter. The return
value contains the previous priority of this task.

The main function of the TaskPri program is like that of the
previously mentioned Task command. The evaluation of the given
parameters is programmed exactly as it was described in the beginning
of this chapter. This time there is also a small syntax check that gives a
message when incorrect input is made: The command should only be
given two additional parameters (axrgc !== 3) otherwise the main
function exits. Taskname Priority appears on the screen to inform
the user of the required parameters. This information will be displayed
when you enter a space and a question mark following the command,
thus giving you the argument template.

The correct parameters are converted to long format by the Value ()
function because SetTaskPri cannot process ASCII values.
Value () expects a pointer to the input data as a parameter
(argv([2]) and also the address of a variable where the converted
result can be stored (&pri).Value () returns False if a matching
function isn’t found or if the permissible parameters are not in the
correct range. The remainder of the main function explains itself: In
case the desired task structure is found—FindTask supplies a value
other than null—the new priority is entered here and the previous value
is displayed in the CLI window.

The Value () conversion function is a C problem that we will not
describe in detail here. The job of the function is simply to convert the
ASCII input into a value between -128 and 127.

Calling our new CLI function is very easy: use the Task command to
display the tasks and their priorities. Use the TaskPri command
followed by a task name and a new priority value to change the priority
of the task. The task name must be placed in quotation marks if it
contains spaces (for example File System).

ABACUS

93 TASKPRI

The following example demonstrates this command:

Use the Dir command to display the contents of the Workbench disk
in the CLI window. Move the mouse arrow around the screen at the
same time. Result: Movement of the mouse is completely normal.
Now enter TaskPri Input.device -1 from the CLI. The messige
Oldpriority was: 20 new is -1 is displayed on the screen. Try
the Dir command again and move the mouse. You’ll see that the
mouse arrow moves only after the directory is output.

This isn’t a very meaningful example, but it does show how the new
command functions. Enter TaskPri Input.device 20 to returnto
normal. There is a better example:

Pretend that you would like to print out a lengthy file while you are
writing a new letter with your word processor. In some cases the speed
of the word processor will be slowed down considerably. It may notbe
able to keep up with the processing of the letter and printing. In this
case it is helpful to set the priority for the word processor at +5 and the
priority of the Printer.device at-5. The printing may take a few
;ninutes longer, but you won’t notice this because you are writing the
etter.

A similar problem arises with compiler languages such as C: If you try
to make changes to a source file during the compilation operation, ED
reacts very slowly to input. Setting the compiler’s priority at a lower
number prevents this effect.

231

9. CREATING CLI COMMANDS

AMIGADOS INSIDE AND OUT

9.4

232

TaskStop

i i the Amiga for a
'11 present a way of stopping all actions on
l1;\>Ieor‘iwodwcff tulr)xe by just pressing a key. W}l:at gggccill is ;lfns;? g(}azx;e g:lagleg;
find this useful: The phone rings in the middle 3 "t' e
i i the game goes “on hold. Say itis y
pressing the left <Shift> key * ol S o the new
on the phone and he wants to k_now ow Y
t}”rog;essionalpDa\taRetrieve program is progressing. Y_ou can mov§0 t:lse
game window to the back until you are finished talking t&)l(f)rurnt ami
When you are ready to continue, move the game screelm to the fro
press the right <Shift> key. The game continues to piay.

be
i rograms other than games. Every program can
gﬁ:e‘&v (v)vrﬁlsx gcl;; x?ewgCLI command. Someo?sl th;lo just l}a;il zg; édea catix;
i another screen and write it down while the onigin gram
g?:sge;pA relatively small C program (Taskstop.c) for the command
follows:

#include <exec/types.n>
#include <exec/execbase.h>
ginclude <exec/tasks.h>
#include <exec/exec.h>
#include <exec/execnanme.h>
ginclude <exec/llists.h>
#include <functions.h>
$define SHIFTLEFT 0x3f
f#define SHIFTRIGHT 0x3d
#define CONTROL 0x39

extern struct ExecBase *SysBase;
main()

{

struct Task *taskj;
char *keysj:
int i;

ie:soi 0xbfec0l; /* Address of the speci:l keys */
printf ("\n Shift Left = Stop, Shift Right
Continue, Control = End\n ")
task = FindTask(OL);s
if (task == OL)

;rintf (* I can't find the Task \n")};
exit (OL);

}

SetTaskPri (task,127L);
do

{

ABAcuUSs

How the
program
works

94 TAskSw0?

if (*keys == SHIFTLEFT)
{

do

{

1++;
} while ((*keys != SHIFTRIGHT) && (*keys != CONTRQL)

i++;

}

Delay (10L);

} while (*keys != CONTROL):

After the integration of the required Header files the three macrosare
defined. They are assigned the respective key values. The pointerfor
Execbase is also needed for this program. In the main functio, a
pointer for the Task structure is defined first. The *keys pointe is
set to the hardware register, from which the keyboard codes are rad.
This is not the best way, but for our program it is the simplest becase
it can react quickly to keyboard input. The Oxbfec01 address tlis

whether the special key was pressed or not. The key pointer is suppied
with this address.

When the user presses one of the control keys, a pointer for the Task
structure in the task pointer is picked by using FindTask. The
program is ended prematurely if this structure isn’t found: The Guru

remains in the background. The task is given the highest prioity
(+127) if the structure is found.

So that other tasks receive enough computing time, program execuion
can be held up for 10-50 seconds with the Delay command. Durng
this time other programs can be placed in the Running list. The
<Shift> key doesn’t work during this time. When the task is active md
the left <Shift> key pressed, the program goes into a loop that camot
be interrupted by another task. When the right <Shift> key or <Ctrb> is
pressed, the loop is stopped. Pressing <Ctrl> exits the program,

It isn’t very easy to give concrete examples for all the uses of the
TaskStop command. A small tip: As a background process that tan
be started with Run, the new command functions flawlessly. It tan
easily be integrated into the startup sequence of a self-loading gme
disk.

33

9. CREATING CLI COMMANDS AMIGADOS INSIDE AND OUT ABAcus 9.5 Dgy,
. AY

}

result = Value(argv([l], &Count);
if (result == FALSE)

9.5 Delay :

printf (™ 0 < Wait time < 999, out of range:
%ld\n", Count);
exit (FALSE);
When a game program stopped with the TaskStop command is re- }
activated by pressing the right <Shift> key, the game immediately if (arge == 3)
continues. Our new Delay command makes it possible to make the ! 1t = .
game speed more efficient. The advantage to this is that the program is result = Value(argv(2], épri);
actually slower, but not the reaction to our input. ifF¢

127 (result == FALSE) || (pri < -127) || (pri >
<Shift> The <Shift> keys are not used in the same manner as they were in the 2 (
keys TaskStop command: They allow the program to be delayed dynami- printf (™ -127 < Priority < 127, out of rage:
cally. That means that the longer they are held down, the longer the %ld\n", pri);)
delay is. There is an additional feature built in the program. All exit (FALSE);
programs can be delayed with the new command. The command must }
have a high priority if the game program also has a high priority. Oth- }

task = FindTask(0L):

erwise the command should have as low a priority as possible so that it if (task == OL)

doesn’t interfere with the system tasks. For example, if the priority is

higher than 20, the delay also works for the mouse. This is an unac- t printf ("Did not find a task!\n");
ceptable condition for a game. All of these problems vanish when using exit (OL) ;
the Delay command. But first, the program.... }
SetTaskPri (task, pri);
The C listing for Delay:
do
/* Delay.c */ {
/* Control = End, Shiftleft = slow, Shiftright = fast */ i =o0L;
Delay(5L });
#include <exec/types.h> for (i = OL; i < Count * 10L; i++)
#include <exec/tasks.h> {
#include <functions.h> while ((*key == SHIFTLEFT) && (Count < 995L
#define CONTROL 0x39 Y)
#define SHIFTLEFT Ox3f {
#define SHIFTRIGHT Ox3d Count++;
extern struct ExecBase *SysBase; Count++;
main{argc, argv) Count++;
int arge: Count++;
char *argv(]}:; Count++;
{ Delay(1L);
char *key; }
struct Task *task; while ((*key == SHIFTRIGHT) && (Count > 5l))
long Count: {
long pri; Count-~;
int result:; Count~-;
long 1i: Count-~;
Count = 1L; Count~-;
key = Oxbfec0l; Count-~;
pri = OL; /* Priority of 1 first */ Delay(1L);
1f ((argc != 2) && (argc != 3)) }
{ }
printf (" Delay [Priority] \n"); } while (*key != CONTROL);
exit (FALSE); printf (" Count = %1ld\n", Count);

234 235

236

vonane e CUMMANDS AMIGADOS INS!DE-AND Our

}
/* Up to three characters 0 - 999 */

Value(string, value)
char *string;
long *value;
{
int §;
int numdigits;
char sign;
int numeral;
int tens;
tens = 1;
numdigits= 0;
*value = QOL;

if :*string == ') /* negative number =*/
tens = ~1; /* change to negative number */
string++; /* ignore minus sign */

}

for (1 =1; 4 <= 4; 1i++) /* number of numerals */
if (*string == Q)

break;
string++;
numdigits++;
}
1f ((numdigits== Q) |] (numdigits> 3)) /* only
{ three numerals allowed */
printf (" Too many numerals %d\n", numdigits);

return (FALSE);
}
for{(i = numdigits; 1 > 0; i-~) /* create number */

string--;
sign = *string; /* read string back*/
if (sign < Q' |} sign > 94y

{
printf ("Incorrect numeral %c \n", sign);
return (FALSE);
}
numeral = sign - *0';
*value = *value + numeral * tens;
tens = tens * 10;
}
/* 1€ (*value <= 999)| *value > 999)
return (FALSE): */
return (TRUE);
}

ABACUS

How the
program
works

The
Do/While
loop

9.5 DeLay

The beginning of the program is taken directly from TaskStop. Three
cases could take place after evaluating the input Line:

1.

2.

Two or three parameters are not entered. The program stops and the
correct parameters are displayed.

Exactly two parameters are entered. The delay is converted into a
number and the given priority null remains unchanged.

Exactly three parameters are entered. Then the second parameter is
converted into a value, is tested for a valid value, and the variable
Pri is assigned to it.

Then a pointer for the task structure is found using FindTask, and the
new priority is set using SetTaskPri. Without a given priority, our
task always has the priority null, The real work takes place in the Do
‘While loop. This is made up of three components:

1.

A call of the wait function Delay. This makes sure that the high
priority system task has enough time.

A delay loop that is dependent on the delay value. During this
time, all lower priority tasks are blocked.

A double keyboard reading block where both <Shift> keys are
controlled. When a key is pressed, the program checks to see if the
delay value is in the allowable range. The delay value is changed if
it is in the range. The five lines “Count++” and “Count~-"and
the following De 1ay(1L) may make you wonder. Delay prevents
the minimum or maximum value from being reached by pressing a
<Shift> key. The five lines have a double responsibility: Make
sure that the value is changed quickly enough because a delay as
small as 1L is not possible. It also makes sure that the program
does not go on uncontrollably. The program would not be slowed
down if the lines were replaced by a Delay. Because the program
code always has a higher priority, the program is slowed down at
least a little. It would be good to investigate what happens to a
program with a delay of 500. You could then determine that every
time the <Shift> key is pressed the program actually speeds up.

237

9. CREATING CLI COMMANDS

AMIGADOS INSIDE AND OUT

9.6

Note:

238

Replace

i 1d replace characters or
ould like a command that cou)
anw%maww Mcw.mmimé_.« good word Eoommwo:a :mm wcno_w mwwmmmﬁmmw Mﬁm
: s fo
i I Search command Bu.ﬂ searches 1€ suings 11
Mwmﬂw@ m_w you can’t replace anything with this MoMM.&:a. e
Smmmwa anew CLI command to do this called Replace.

i is placed in a new
i e of this command 5.92 the .ammcz isp y v
W_Emmmwuw%ﬁwm error occur, the original file is ==nrm=mmaﬂ. www_w wwﬂw
o d also allows any characters to be searched mo_. and repla Y s
:wws ters. For example, you could replace a carriage return ig aspacs
; wBM m. ace with 100 periods. To allow any characters 8a ppan
m”.mm,\ ,.Mwm% be entered in ASCII form. A space i 2 wwmmmmcacoa aee
Hmcwn: is a 13. Because it is unusual to enter n:mnwoﬁqwm S ns.B,m u
also enter the character strings. Replace examin el
ter. £ the input. It takes all of the following Q._E.moﬁa as Lvaues
m—.%m first owﬁ.mnsn is a numeral, Otherwise it takes them as ¢

strings.
Now we come to the call of the new command. It reads:
Filenameold Filenamenew string

Filenameold is the name of the file that should be read. The com-
plete path can be entered.

itten.
Filenamenew is the name of the new file that should be writt

Replace does not check if the file exists and also overwrites exisung
files like all other CLI commands.

i i hould be replaced. Search
ing i tring that is searched for and s . .
Nm% anm.wﬁwmw_mw ma separated by a colon and cannot contain Space
An example of a call could be:

Replace Oldfile Newfile Meier:Mayer

i .In
In the file Newfile all Meiers would be replaced with ﬂmww.wwuga
this case character strings would be w‘:ﬁn&. Rep Hmooom no%o,mz e e
neither Meier nor Mayer starts with a numeral (#).
another example that involves ASCII values. The call:

Replace Oldfile Newfile 13:32

ini input
replaces every CR (13) with a space (32). Combining both inp
possibilities is allowed. The following:

ABACUS

9.6 REPLACE

Replace Oldfile Newfile 32

fessen

replaces every space (32) with S periods. To replace a string of ASCII
values, separate the individual numbers with commas. So

Replace Oldfile Newfile 32,32,32:32
replaces three spaces (32,32,32) with one (32).

The length of the search strings is limited to 127 characters, which is

enough for normal use. You can create a test file if you need by doing
the following:

First build a file with the same characters using:
ECHO >RAM:TEST "aaaaaaaaaaaaaaaaaaaa"
Now replace each a with many new a’s using:
Replace RAM:TEST RAM:TEST1 aiaaaaaaaaaaaaaaaaaaaaaaasasaaa

When you want to remove a character string out of the file, you must
not enter anything after the colon. For example:

Replace Oldfile Newfile 32:

removes all spaces from the file.

The first character differentiates between numeral and character input. So
Replace would not accept the following input:

Replace Oldfile Newfile 3Days:4Hours

In this case we should explain the exact operation of the program
because this has nothing to do with AmigaDOS. It is structured and
documented for all programmers. Our program uses a circular buffer for
characters it has read but not yet analyzed. They are stored in this
circular buffer until it can be determined if the string has been found yet
or not. Such a string can be utilized in C using the Modulo command.
We use a more complicated yet faster method. The sub-program for
reading new characters checks to see if the end of the buffer is reached
and places the valid input at the beginning of the buffer.

/* Replace.c This program replaces strings in files */
/* For 100 K on the RAMDisk it took 27 Seconds */
/* */
[* kaEIAAkAxR*X%X** Copyright Manfred Tornsdorf ***+* #/
/* */
#include <stdio.h>

#define FALSE 0
#define TRUE 1
#define byte unsigned char

/* Constants, make reading */
/* the program easier */

139

9. CREATING CLI COMMANDS AMIGADOS INSIDE AND OUT

$define Maxbuffer 512 /* Size of the Read buffer */

void shift (s

char Searchstring(127];
char ReplaceString(127}; /* replacement string */
char Bufferin[Maxbuffer]; /* read buffer */

int Pwrite; /% Place in buffer for writing */
int Pread; /* Place in buffer for reading */

/* Search string */

unsigned long Num; /* Num for characters */
unsigned int Fromlen;

unsigned int Tolen;
unsigned int NumRepl: /* Num for : how often replaced */

FILE *Rin, *Rout;

/* Get Parameters ——======s==ToTT */
vold GetPara(Para, First, Next)
char *Para;
char *First;
char *Next;
{
int Number:
int Length; /* Number for length, 0 not counted */
*pirst = 0;
*Next = 0;
Length = 0; /* Length set to O */
Number = atoi(Para)j, /* check String or ASCII value */
if (Number != 0) /* AsCII-value for stringl */
{
while ((*Para != 0)&&(*Para t= ':))
/* still more stringl */
{
Number = atoi(Para);
{f (Number > 255) /* number not allowed */

printf ("Number {s not ASCII-value\n");

exit ()
}
x(First++) = (char) Number; / take char */
Length++;
while ((*Para != 0)&&(*Para 1= ', ')&&(*¥Para !=
l:l))
Para++; /* separate search */
if (*Para == ',') Para++i /* skip , */

} /* End While */
First = 0; / end Stringl with 0 */
Fromlen = Length; /* save length of stringl */
} /* End 1f(ASCII) */

else /* stringl is a string */

for (Length = 0} (*Parat=0)&&(*Paral="':"); Para++)

240

ABACUS

9.6 REPLACE

* (First++) = *Para:
Length++;
}

* - -
First = 0; /* end search string with 0 =/

Fromlen =
} /* End else */
if (Fromlen == 0)

{
printf("Search string must be given!\n");

exit ();
}
if (*Para t= *:")
{
printf("Colon missing!\n");
exit ()
}
iara++;— /* Set Para after colon */
Ni;izh = Oé /* Length set to 0 */
r = atoi(Para); * i i
e a); /* Check if String or ASCII-

if (Number != 0

() /* ASCII-value for String2 */

Yhile (*Para != 0) /* Parameters for String2 */
Number = atoci(Para);

if (Number > 255) /* number not allowed ¥

{
printf(“Number is not ASCII- '
b value\n"); .
}
;(Next++) = (char) Number; /* take characters *
w;;ith++i /* increase length */
e =
oy ({(*Para != 0)&&(*Para !'= ',')&&(*Para !=
i Pira++; /* separate search */
(*Para == ', ') Para++; /* skip */
} /* End While */
*Next = 0;

/* end String2 with 0 =/

Tolen = Length; /* save length of String2 */

} /* End if (ASCII)

?lse /* String2 is a String */
for(Length = 0; (*Para!=0); Para++)
* (Next++) = *Para;
Length++;
}
*Next = 0;
Tolen = Length;
} /* End else */

/* end replace string with 0 */
/* save length of string */

241

9, CREATING CLI COMMANDS AMIGADOS INSIDE AND OUT

}

int Reader (Amount)

int Amount;

{

register char Charsin;
register int numread;

numread = 0;

for (numread = 0; numread < Amount; numread++)
{

Charsin = fgetc(Rin):

1f (Charsin == EOF)

return (numread) ; /* no more chars in file */

Num++; /* increase num chars */

Bufferin([Pread++] = Charsin;

if (Pread >= Maxbuffer) /* Buffer at end, overflow */
Shift(): /* shift to beginning */

}
return{numread) ;

}

void sShift() /* contents in buffer shifted */
{
register int howmany:
register int i;

howmany = Pread - Pwrite;
for (1 = 0; i< howmany; i++)
Bufferin(i] = Bufferin[Pwrite+l];
Pwrite = 0; /* set new Indices */
Pread = i:
}

int Checkbuffer() /* compare search string with buffer */
{

register char *string;

register int i;

i = pPwrite:
for (string = &SearchString[0]; *string != O; string++)

if (*string != Bufferin(i])
return (FALSE) ;
1++;
}
return (TRUE) ;
}

void Writecharacter() /* Write Char in buffer to file */

{
register char Charsin;

Charsin = Bufferin([Pwrite};
fputc(Charsin, Rout):

242

ABacus

9.6 REPLACE
Pwrite++; /* reset write pointer */
}
roid Replace () /* write replace string, off buffer */
int 1:

char *string:;
register char Charsin;

i=1;

for (string = &ReplaceString[0]; *string != 0; string++)
Charsin = *string;
fputc(Charsin, Rout):
i++;

}

)Pwrite = Pread; /* write=read polnter -> clear buffer */

void Writerest() /* no more char in file, write buffer */
{

register char Charsin;

int §;

i=0;
for(i = Pwrite; i < Pread; i++)
{
Charsin = Bufferin[i}];
putc(Charsin, Rout);

main (Amount, Argument)
int Amount;
char *Argument{];
{
int Numtoread;
int Totalread;
int Error:
if (Amount != 4)
{
printf("This program replaces char strings \n");
printf("Copyright Manfred Tornsdorf\n");
printf(”Call: Filenameold Filenamenew String\n");
/* next line should be entered on one line in Amiga*/
printf("either :String =
Number, Number, Number. .. :Number, Number, Number...\n")
printf("or :String = string:string\n\n");
/* next line should be entered on one line in Amiga ¥/
printf("Example :Replace t.txt tt.txt
Mytext:32,33,32\n");
printf("gives i<Mytext> -> < t >\n");
printf("No replace string, so it is deleted\n’)s
exit();

243

9. CREATING CLI COMMANDS AMIGADOS INSIDE AND OUT

244

}

GetPara (Argument (3], sSearchstring, gReplacestring)i
/* build search and replace string */

Fromlen = st:len(SearchString);

Tolen = strlen(ReplaceStrinq);

Rin = fopen(Arqument[l], "rv);

Rout = fopen(Argument[Z], W)

if (Rin == 0)

{

puts ("Input file not found!™);

exit ()¢

}

if (Rout == Q)

{

puts ("Cannot open the output filel!™);

exit ()7

}

Num = 0?

pwrite = 0; /* Write pointer to start of buffer */
Pread = 0} /* read pointer to start of buffer */
Numtoread = Fromlenj /* search string chars to read */
NumRepl = 07 /* Default: not found */

Totalread = 1; /* Default, the TC to count */
while{Totalread != 0)
{
Totalread = Reader (Numtoread) ;
/* read amount for file */
Error = Checkbutfer()

if(Error == FALSE) /* not found */
{
Writecharacter{)s; /* 1. write chars */
Numtoread = 1; /* read one char */
}
else /* found */

Replace(); /* wWrite replace string, off buffer */
NumRepl++: /* increase number replaced */
Numtoread = Fromlen;
}
} /* End whileQ), File empty */
Writerest()j /* Write last char from buffer */

printf("\nString replaced %d times!\n", NumRepll);
fclose(Rin);

fclose (Rout) ;

exit ():

10.
Quick Reference

ABACUS 10. QUICK RErERENCE

10. Quick Reference

This chapter contains all the information you have seen so fir about
CLI commands and Shell commands, as well as comminds for
controlling ED and Edit. The three sections of this chapter show these
commands in abbreviated form to help you find them easily.

Sections 10.1 and 10.2 present an overview of the key combinations
and their effects in the ED and Edit editors. These are listedin table
form.

Section 10.3 lists the CLI/Shell commands in a simila form,
Hopefully this clear format will help you find commands much faster.

2417

10. QuICK REFERENCE

AMIGADOS INSIDE AND OUT

10.1

The ED Program

The ED editor uses two types of commands. One type executes immedi-
ately after the corresponding key combination is pressed; the second
type requires entry of the first command in command mode.

First we will present the direct commands that always consist of two
key combinations. These key combinations always begin with the
<Cul> (control) key. You press another key to implement the
command.

The command mode commands will be presented next. You enter com-
mand mode by pressing the <Esc> (Escape) key. You can tell if you are
in the command mode by a small star (asterisk) in the lower left corner
of the editor screen. You only need to enter the command and press the
<Return> key to start the command.

There are commands in both sections that have the same effect, so you
must decide which type of command works better for you.

Direct commands (without <Ctrl>)

Tab moves the cursor to the next tab mark

Del erases the character under the cursor

Backspace erases the character to the left of the cursor

Return text between the cursor position and the end of the line are
moved to the next line

Direct commands (with <Ctril>)

248

<Ctrl><I> moves the cursor to the next tab mark

<Ctrl><U> moves the cursor up 12 lines

<Ctrl><D> moves the cursor down 12 lines

<Ctrl><R> moves the cursor to the end of the word to it’s left
<Ctrl><T> moves the cursor to the start of the next line
<Ctrl><J> moves the cursor to the start or end of the line
<Ctrl><E> moves the cursor to the start or end of the window
<Ctrl><H> erases the character to the left of the cursor

<Curl><O> erases a word or all spaces up until the next word
<Ctrl><Y> erases everything from the cursor position to end of line
<Ctrl> erases the entire line

<Ctrl><M> text between the cursor and line end is moved to next line
<Ctrl><A> inserts aline

<Ctrl><G> the last command-mode command is repeated
<Ctrl><[> enter command mode same as pressing <Esc>
<Ctrl><F> toggle upper-lowercase

ABAcCuUS

10.1 THE ED PROGRAM

Command mode commands (with <Esc>)

Mn
CL
CR
CS

—

I“Text”

E “Text1“Text2”
EQ “Text1“Text2”
F “Text”

BF “Text”

LC

uc

X

Q

SA

RP

SH

U

SLn

SRn

EX

moves the cursor to the nth line

moves the cursor one position to the left
moves the cursor one position to the right
moves the cursor to the start of the line
moves the cursor to the end of the line

moves the cursor to the start of the previous line
moves the cursor to the start of the next line
moves the cursor to the start of the text
moves the cursor to the end of the text

marks the cursor position as the start of a block
marks the cursor position as the end of a block
shows the marked block in a window

saves marked block to “data”

inserts marked block at the cursor position
deletes marked block

deletes character at cursor

deletes entire line

moves text between cursor position and end f line
to next line

combines current line with next line

inserts “Text” before current line
inserts“Text” after current line

inserts Data at cursor position

exchanges “Text1” for “Text2”

exchanges *“Text1” for “Text2” after prompt
begins search for “Text” at cursor position
searches for “Text” up to the cursor position
enables case sensitivity during a text search
disables case sensitivity during a text search
exits ED and saves text

exits ED without saving text

saves text

repeats command until an error occurs
displays current editor settings

changes to the current line are canceled

sets left margin to n

sets right margin ton

ignores right margin on current cursor line

249

10. QUICK REFERENCE

AMIGADOS INSIDE AND OuT

10.2

250

The Edit Program

i i ibed i i ion there is another
Besides the ED editor described in the previous section anoth
editor on the Workbench disk. It’s the Edit editor, The followmg_}lsc:
of Edit commands is intended as a reference only, not as detal. e
instructions. More detailed information about the operation of the editor
can be found in Section 2.4.2.

Partial arguments are passed together‘ with the command words.a]’{hc_:
slash / serves as separator between strings. Arguments that hav: ; ;re
nate input possibilities are placed in parentheses ()..So tba }

command text doesn’t become too long we use the following abbrevia-

tions:

&b = line number (or . or *)
bg = command group

mn = numbers

q = qualifier

sk = search criteria

sw =~ change value (+ or -)
z1,22 = string

and now to the commands:

NIV A

PA(q)/zl
PB(q)/2ll

PR
Mn
M+
M-

N

P

Rewind
F((q)iskl)
BF((q)/ski)
DF((q)/ski)

?

moves the character pointer one character to the lgft
moves the character pointer one characger to the_qght
deletes the character at the character pointer position
changes the character at the character pointer position
changes the character at the character pointer position to
u ..

nfoves the character pointer to the position after the
specified string zl .

npx)c?\cres the character pointer to the position before the
specified string z1]

mps\cres the character pointer to the start of the line

moves the character pointer to line n)

moves the character pointer to the las} line of source data
moves the character pointer to the first available line in
the buffer .

moves the character pointer to the next'lme)

moves the character pointer to the previous line
"rewinds” the source file)

searches line that contains the string sk (forward searcgl)
searches line that contains the string sk (reverse searc)h)
searches line containing the string sk is (forward searc
deletes all skipped lines

verifies the current line

ABAcus

10.2 Tug Eprr PROGRAM

! verifies the current line with all non-printable claracters

T displays the source file up to the end of the fije

Tn displays the next n lines of the source file

TL n displays the next n lines of the source file with line
numbers

N displays as many lines ag will fit in the text bufer

TP displays all lines of the text buffer are shown ap sets the
pointer to the beginning of the text buffer

Vsw enables (+) or disables (-) verification

A(q)iz1/22/ inserts string 22 after string z1

AP(q)/21/22/ inserts string z2 after string z1, then sets the tharacter
pointer behind z1

B(q)z1/221 inserts string z2 before string 21

BP(9)z1/22! inserts string z2 before string z1, then sets the Character
pointer behind z1

CL(/21/) combines the current line, 21 and the next line

D deletes the current line

DFA(q)r21/ deletes the current line after string z1

DFB(q)/zlf deletes the current line from the beginning of strirg z1

DTA(q)iz11 deletes the current line from the beginning of the line to
the end of string 21

DIB(q)zll deletes the current line up to but not including Strirg z1

E(q)iz1/22/ replaces string z1 with string z2

EP replaces string z1 with string 22, then positions the char-
acter pointer following 22

I(a) inserts text in front of the Current line or beforeg line
from the keyboard until z is entered

1z] inserts entire contents of the file z1 before the arrent
line

Ria(b)) deletes lines a through b and allows text entry fron the
keyboard

(a(b))z1 deletes lines a through b and inserts the text contaired in
filez1

SA(q)z1/ Separates the current line after string z1 when it occrs

SB(q)/z1/ Separates the current Jine before string z1 when it ociurs

GA(q)121/221 inserts string z2 after string z1 in the current line

GB(q)/21/22/ inserts string z2 before string z1 in the current line

GE(q)i21/22/ replaces string z1 with string 22 in all current lines

CG(n) disables global operation n or all global oOperations

DG(n) temporarily disables global operation n or all gbbal
operations

EG(n) enables global operation n or all global operations

SHG displays information about all global operations that
have been active until now

From makes original From file the current source file

From 21 makes file z1 the current source file

To makes original To file the current destination file

To .z1 makes file z1 the current destination file

CF .zl closes file z1

=n assigns the current line number n

C .21, reads additional Edit commands from file z1

21

10. QUICK REFERENCE

252

Hn

SHD
Stop
IR sw

Zz1

AMIGADOS INSIDE AND OUT

sets the next breakpoint to line n. (n="* erases all break-
ggilgtsc)ommand mode; if you exit the highest command
level, the rest of the source file is gransfened

displays saved command information

exits EAit o eading spaces
enables (+) or disables (-) sensitivity to leading sp ce
carries the rest of the source file to the destination file
changes the end character for the insert command z1

ABAcus

10.3 The CLI/SHELL CoMMANDS

10.3

The CLI/Shell Commands

This section briefly covers the CLT/ Shell commands. First the
correct 1.2 syntax of the command appears, then a short description of
the command, followed by a description of the arguments. Ifthe com-
mand supports additional arguments in Version 1.3 they are described.
The new Version 1.3 commands are marked with the identifier (1.3
only).

AddBuffers (DRIVE) Drive (BUFFERS) n

Ask “Text”

Reserves a buffer on a drive with acertain amount of memory,

DRIVE Optional

Drive The drive assigned the buffer.
BUFFERS Optional

n The size of the buffer to be allocated

Asks a question answered with only (Y)es or (N)o: Y returns in error

code of 5 and n returns no error code.
“Text” Contains text displayed on the screen, usually in the
form of a question.
Alias Name String (1.3 shell only)

This command can only be used in conjunction with the Shellin1.3.
The command assigns a string to a word (See Chapter 6),

Name The new command word
String Contains the command that is called with Name,

Assign ((NAME) Name1l ((DIR) Name2)) (List)

Assigns a logical device to a directory,

NAME Optional

Namel The logical device,

DIR Optional

Name2 The directory assigned the logical device.
List Lists the assignments of the logical devices.

253

10. QUICK REFERENCE AMIGADOS INSIDE AND OUT

V1.3 (Exists Name) (Dismount Name) (Unmount
Name)

Exists Name Searches for Name in the Assign list. The error code
5 is returned if Name is not present.

Dismount Name
Removes Name from the Assign list (developer’s

version only).
Unmount Name
See Dismount Name.

Avail (CHIP) (FAST) (TOTAL) (1.3 0only)

Displays an overview of the present available memory configuration.

CHIP Optional, displays total chip memory.
FAST Optional, displays total fast memory.
TOTAL Optional, displays total available memory.

BindDrivers
Introduces additional device drivers to the system.

Break (TASK) Number (All) (C) (D) (E) (F)

Stops a task in process.

TASK Optional
Number Points to the process to be broken off.
All Sets the break level at C, D, E and F.

C,D,EF Sets break level.

Vv1l.3 (Process)

Process See V1.2 TASK.

CD Name

Changes the directory or displays the current directory.

Name The drive or the directory which should be accessed.
ChangeTaskPri (Pri)n

Changes the priority of a process started from the CLT.

Pri Optional, determined by Status command.
n Contains the new priority (-128 to 127).

254

ABAcCUS
103 THE CLY/SHELy Coumanpg

V1.3 (Processn)

Processn The new priority is assigned to Process number n

See the Status command,

Copy Namel to Name 2 (All) (Quiet)

Creates a copy of files or a directory.

Namel The source file.

Name2 The target file,

AII_ Copies the entire directory.
Quiet Displays no output to the screen.

V1.3 (Buffern) (Buf
(Nopro) Loom) ufn) (Clone) (Date)

Buffer n Uses n 512K buffers for copyin
g:;f n See buffer. pYIne:

one Date, Status bits, and comments are als i
Date Date is also copied, 50 copled.
NoPro The Status bits are reset when copied.
Com The comments are also copied.

Date (DATE) Date (TIME) Time (To Name) (Ver Name)

Input or output of date and/or time.

DATE Optional

Date The date to be input.

TI_ME Optional

Time The time to be input.

To Name Th'?; tgame of the file into which the date or the time is
written.,

Ver Name See To Name.

Delete Name (All) (Quiet) (Q)

Erases files and/or directories.
Name Gives the file or directo
he fil ry name to be deleted.
AII. The entire directory is deleted.
Quiet There is no message output to the screen.
Q Abbreviation for Quiet.

Dir Name (OPT(A) (I) (AI) (D))

Displays the directory of a disk.
Name Name of the disk drive or the directol

k ry (pathname).
OPT A Shows all files in the directory including it's subdirec-

tories and their contents.

255

10. QUICK REFERENCE

AMIGADOS INSIDE AND OuT

orT1I The contents are interactively output. After each file or
directory the following inputs can be made.
? Displays the possible commands.
B Back up the directory (directory only).
E Enter the displayed directory (directory only).
T Type the file (files only).
Del The file is deleted.
Q Quit the Dir command.
OPT AI The A and I options are combined.
OPTD Only the directories are listed.

V1.3 (ALL) (DIRS) (FILES) (INTER)

ALL See VI2OPT A

DIRS See V120PTD

FILES Only files, not directories are listed

INTER See V1.2 0OPT1

Note: When using these arguments (ALL, DIRS, FILES,

INTER) do not include the OPT argument.

DiskChange Drive

Tells AmigaDOS that a disk has been changed.

Drive ‘Which drive has experienced a disk change.

DiskcopyDrivel toDrive 2 (NAME Name)

Creates a copy of a disk.
Drivel The source drive.
Drive2 The destination drive.

NAME Name Names the copy Name.

DiskDoctor (DRIVE) Drive

Echo “*Text”

256

Attempts to repair errors on a disk. Damaged files may or may not be
removed.

DRIVE
Drive

Optional.
The drive the program will access.

Sends a text to the current output path,

“Text” Text that is output to the current output path, usually

the screen.

103 THE CLI/SHELL COXMANDS

V1.3 (NolLines) (Firstn) (Lenn)

ABACUS
NolLines
Firstn
Lenn

Ed/Edit

Else

EndCLI

EndIF

EndSkip

Skip.

£eN

Eval Valuel Operator Value2 (TO) (Lformat)

After the output of the given strings, the outputdoesn’t
jump to a new line.

The starting position of the text to be output.

The length of the text to be output.

Used to edit text files. See Section 2.4 for details and Sections 10.1 and
10.2 for the ED and Edit quick reference sections.

Allows alternative conditions in script files (see IF).

Exits CLT or Shell window.

Ends an IF/EndIF construct in a script file (see IF).

Script file resumes execution at line following this command during a

(1.3 ornly)

Evaluates simple expressions.

Valuel Decimal, hex or octal value

Operator math operator: +, -, ¥, /, mod, &, |, <<, >>

Value2 Decimal, hex or octal value

To Optional

Lformat Specifies output format:
%Xn hex (n is number of digits)
%Cn octal (n is number of digits)
BN decimal
%C character

Exacutae Name (Text)

Executes a script file.

Name The name of the script file to execute.

Text The arguments passed to the file.

1§87

10. QUICK REFERENCE AMIGADOS INSIDE AND OUT

Failat (n)

Sets the return error code limit or returns the current return error code

limit.

n Contains the size of the new return error code limit.
Faultn

Prints information about a specific error.

n The valid error number,
FF (-0) (-n) (1.3 only)

This command accelerates the text output on the screen. FF was written
by C. Heath, used by permission of Microsmiths, Inc®.,

<0 FastFont text output is turned on.
-n FastFont text output is turned off (Note: you
should enter —n, not a number for n).
Filenote (FILE) Name (COMMENT) Text

Inserts a comment into a file,

FILE Optional.

Name Which file will receive the comment.
COMMENT Optional.

Text The comment of the file,

Format DRIVE Drive NAME “Name” {NOICONS)

Formats a disk and gives it a name.

DRIVE Required to specify drive.

Drive Location of the drive containing the disk to be format-
ted.

NAME Required to specify Name.

Name The formatted disk receives the name “Name.”

NOICIONS Optional (the disk will not have an icon if this option
is used).

V1.3 (Quick) (FFS) (NoFFS)

Quick Only formats root and boot blocks.
FFS§ The FastFileSystemis used to format.
NoFFS§ The FastFileSystem is not used.

258

T—

ABACUS 103 THE CLI/SHELL CoMMaNDs

Gentenv Namae

(1.3 nl Y)
This command reads the contents of an environment variable,
Name The label of the variable whose contents should ke reaq.
IconX (1.3 only)

Assigns icon and data to a script file. This lets you access the sci

é . sciipt fi
from the Workbench using the mouse with the help of this prolzr;;:
(see chapter 6).

If (Not) (Warn) (Error) (rail) (Textl EQ Text2) (Exists
Name) Commandl (Else Command2) Endif

This command allows choices to be made in script files, bage upon

conditions.

Not Logical reversal of a condition.

Warn Cor;cliition is fulfilled when error code is larger than or
equal to §.

Error Cona?itioixois fulfilled when error code is larger tian o

] equal to 10.)

Fail Condition is fulfilled when error code is larger tian or

equal to 20,

Text] EQ Texr2

) Condition fulfilled when Text 1 equals Text 2,
Exists Name Condition fulfilled when file Name is accessible.
Command]l Executes CLI Commandl when a condition is fulilled.

Else Commandl
Executes CLI Command2 when the condition & not
fulfilled,

EndIF Ends the IF block.

Info
Displays information on the screen about connected disk drives.
V1.3 (Devica)
Device Specifies a device,

Install (DRIVE) Drive

Converts a blank formatted disk into a boot disk.

DR]VE Optional.

Drive The drive which contains the disk to be installed.
V1.3 (NoBoot) (Check)

NoBoot Makes the disk a non-bootable DOS disk.

159

10. Quick REFERENCE AMIGADOS INSIDE AND OUT

Check Checks to see if the disk is bootable and if the standard
Amiga boot code is present.

Join Namel Name2 (AS) Name3

Lab Text

List (Name)

260

Joins two or more files together.

Namel First of the two files to be joined together.
Name2 Second of the two files to be joined together.
AS Optional.

Name3 The file to which the joined files are written.
v1i.3 (To)

To Functions exactly like AS.

Defines a string as the branch labe! for a script file.
Text The string to be defined as a label.

(Pat Pattern) (P Pattern) (Keys) (Dates)
(NoDates) (To Name) (S Text) (SinceDate)
(Upto Date) (Quick)

Lists data about files.

Name Displays only information about the file Name.

Pat Pattern Displays only the files specified in Pattern.

P Pattern See Pat Pattern.

Keys Displays the number of header blocks of the file or
directory.

Dates Displays the date.

NoDates Suppresses the date.

To Name Sends the output to the file Name.

S Text Displays information about file whose name is con-
tained in Text.

Since Date Displays only the files created since Date.
Upto Date Displays only the files created before Date.
Quick Displays the filename only.

v1.3 (Block) (NoHead) (Files) (Dirs)
(LFormat="Text”)

Block The file size is given in blocks
NoHead The information is suppressed
Files Lists only the files

Dirs Lists only the directories

LFormat="Text”
The option causes the text in Text to be displayed.
Entering %s serves as a place holder for the actual file

ABAcCus
103 THE CLI/SHELL CoMmunpg

name. Entering a second %s causes the fi
glsplayed a second time. Entering three 3
irst one to display the path description of th

file. The next two contain the filename, Entefir?:r;oem
s produces the path description for the first and mﬁ

ones and the filename for the second and fourth,

lename ¢ pe
S causes the

LoadWB ~Debug

Loads the Workbench from the CLT or the Shell.

-Debug Adds a hidden menu with the debugging commands

Debug and FlushLibs.

Lock (DRIVE) Drive (On Password) (Off Password)

(1.3 0n ly)
| Prevents or allows access to a hard drive partition,
' DR_IVE Optional
§ Drive Contains the protected hard disk partition.

OnPassword Prevents access to the hard drive partition. Access is

restored after entering the password (max. 4 characters
Off Password Removes an existing password. This command furzc
tions only with Kickstart 1.3,

MakeDir Name
Creates a new directory with the name Name.

Name The name of the new directory.

Mount (Device) Name
Creates a device.

Device Optional
Name A new device name.

V1.3 (From Name)

From Name Removes parameters from the file Name instead of the
Devs/Mount-1list file.

NewCLI (Con:x/y/Width/Height (/Text)) (FromName)

Opens anew CLI.

x The X-position of the upper left corner of the new
window.

y The Y-position of the upper left corner of the new
window.

M 261

10. QUICK REFERENCE

AMIGADOS INSIDE AND OUT

Width Window width in pixels.

Height Window height in pixels.

Text Title of the new window.

FromName Accesses the script file Name after the new CLI

window opens; if no filename is given the default file is
s:CLI-startup.

NewShell (Newcon:x/y/width/height (/Text)) (From Name)

(1.3 shell only)

This command opens a new Shell window.

x The X-position of the upper left corner of the new
window.

y The Y-position of the upper left comer of the new
window.

width Window width in pixels.

height Window height in pixels.

Text Title of the new window.

FromName Accesses the script file Name after the new Shell

window opens; if no filename is given the default file is
s:Shell-startup.

Path (Name ADD) (Show) ((Name) Reset)

Prompt Text

Displays or changes the pathname.

Name ADD Adds a path to the directory Name.

Show Shows the current path.

Name Reset Deletes all paths up to the c directory and the path
Name.

V1.3 (Quiet)

Quiet Suppresses output from the current output channel.

Changes the CLI or Shell prompt string. The Shell in V1.3 can
use %3 to display the currently directory.

Text Formats the prompt’s appearance; $n displays the CLI
process number.

Protect (FILE) Name (FLAGS) Status

262

Determines what sort of protection data should have.

File Optional.

Name The name of the file to protect.
Flags Optional. .
Status Sets the protection status.

ABAcus

mo g

V1.3 (+) (=) (Add) (Sub)

103 THE CLI/SHELL CoMMnDs

The file can be read.

The file can be written to.
The file is deletable.

The file is executable.

+ Sets the status of the given Status bit.

- Removes the status of the status bit.
Add See + l
Sub See -

In V1.3 the Hidden (H), Script (S), Pure (P) and .
Archive (A) bits can be set or reset. ®

H Hidden file.

S The_ﬁle can be started without execute
(script files only)
P The file can be placed in the Resident lit

A The file is archived,
The H and A bits function only with Kickstart 1.3.

Quit (n)

Stops execution of a script file and returns an error code.

n Error code.
RelLabel (DRIVE) Drive (NAME) Name

Changes the name of a disk.
ng Optional.
rive The drive containing the disk
NAME Optional. 8 tobe renamed.
Name The new name of the disk.

Remrad

(1.3 only)

This mmmd erases all files from the reset-resistant RAM disk. The
Ramdrive.Device is also removed after the next boot.

Rename (FROM) Namel (TO (AS) Name2
Renames files.

FROM Optional.

Namel Name of the data which is to be renamed.

10 Optional.
AS Optional.
Name2 The new name,

263

10. QUICK REFERENCE

Resident (NAME) File (Remove) (Add) (Replace) (Pure)

(System) (1.3 0only)

This command erases, replaces, or includes a new command in the list

of resident commands.

NAME Optional.

File Contains the command that should be activated in the

Resident list.

AMIGADOS INSIDE AND OUT

ABAcCUS

10.3 THr CLI/SHELL CoMmaNDs

SetDate (FILE) Name (DATE) Date ((TIME) Time)

Inserts a date or time into data.

FILE Optional.

Name File into which the date and time are inserted.
DATE Optional.

Date The date assigned to the file.

TIME Optional.

Remove Deletes the command from the list. TIime The time assigned to the file.
Add The command is included in the list.
Replace Replaces an existing command of the same name in the Setenv Name String (1.3 only)
list with the new version of the command.
Pure Checks Pure bit of the command to see if it is set. Assigns a string to an environment variable.
System Files added to the system portion of the resident list
cannot be removed. Name The label of the variable
String The character string to be assigned to the variable
Run Command
SetPatch
Runs a program in the background.
Patches ROM in 1.2/1.3 Kickstart, enabling recoverable alerts.
Command An AmigaDOS command to run in the background.
Skip Text

Search (FROM) Name (SEARCH) Text (All) .
Jumps within a script file to a defined label.

Searches data for a string.

Text Contains the string defined as a label.
FROM Optional.
Name The file to be searched. Sort (FROM) Namel (TO) Name2 (Colstartn)
SEARCH Optional. .
Text The string to be searched for. Alphabetically sorts a file and saves it to another file.
All Searches all directories and subdirectories.

FROM Optional.
v1.3 (NoNum) (Quiet) (Quick) (File) Namel The source filename.

T0 Optional.
NoNum Displays no line numbers if string is found. Name2 The new file the sorted data is written to.
Quiet No output is displayed. Colstartnn The line after which the text is sorted.
Quick The output format is more compact.
File Searches for the specified file then the character string. Stack (n)

SetClock (OPT Load) (OPT Save) Changes the stack size or returns the current size.

Transfer the system date and time to and from the clock. n The stack size in bytes.
OPT Load Loads date and time from the internal clock. Status (Process) Number (Full) (TCB) (CLI) (All)
OPT Save Saves system time and date to the internal clock.

Outputs information about CLI processes.

V1.3 (Load) (Save) Process Optional

Load Loads date and time from the internal clock. Number Selects the task number which should be displayed.
Save Saves system date and time to the internal clock. Full Combines the TCB and CLT options.

264 165

10. QUICK REFERENCE AMIGADOS INSIDE AND OUT

TCB Displays information about priority, stack size and
global vector size.

CLI Displays the status of the current command process.

All See CLI.

V1.3 (Com=Command) {(Command=Command)

Com=Command Searches for the CLI command Command.
Command=Command See Com=Command.

Type (FROM) Namel ((TO) Nama2) (OPT(N) (H))

Displays the contents of a file.

FROM Optional.

Namel The source file,

Name2 The destination file to which Name1 is copied. If a name isn’t
given the file appears on the screen,

OPT N The lines are displayed with line numbers.

OPT H The characters are displayed in hex and ASCII characters.

v1l.3 (TO) (Hex) (Number)

10 Entered in conjunction with Name?2. Name2 is overwritten
without question if it already exists. A message saying that
Name2 exists already appears if TO is omitted.

Hex See V1.2 OPT H. Do not use OPT with this argument.

Number See V12 OPT N. Do not use OPT with this argument.

Wait (n) (Sec) (Secs) (Min) (Mins) (Until Time)

Shifts the system to a pause mode.

n Waiting time in n units.

Sec, Secs Specifies the unit as seconds.
Min, Mins Specifies the unit as minutes.
Uniil Time Waits until the input time.

Which Name (Nores) (Res) (1.3 only)

¥Why

266

This command searches for and displays the path of a command (helps
locate the command’s location on disk).

Name Name of the command to search for.
Nores Suppress search in resident list.
Res Limits the search to the resident list.

Returns information about the last error that occurred.

Appendix

ABACUS

APPENDIX

Appendix

Command ang editor sequences in the CLI/Shell

Escape
sequences

Control
sequences

Using the <Ctrl> and <Esc> keys, sequences can be entered diectly in
the CLI/Shell or by using the Echo command inside a batch file
that can effect the output. When the Echo command is used, the <Esc>
key can be set using the character combination *e.

<Esc>c

<Esc>[0m
<Esc>[1m
<Esc>[2m
<Esc>[3m
<Esc>{30m
<Esc>[31m
<Esc>(32m
<Esc>[33m
<Esc>[4m
<Esc>{40m
<Esc>[41m
<Esc>[42m
<Esc>[43m
<Esc>[Tm
<Esc>[8m
<Esc>{nu
<Esc>[nt
<Esc>[nx
<Esc>[ny

The contents of the CLI/Shell window is erasedand all
other modes are turned off

All other modes are tumed off

Bold text is turned on

Color number 2 becomes the text color (black)

Italic text is turned on

Color number 0 becomes the text color (blue)

Color number 1 becomes the text color (white)

Color number 2 becomes the text color (black)

Color number 3 becomes the text color (orange)

The text is underlined

Color number 0 becomes the background color (blue
Color number 1 becomes the background color (white)
Color number 2 becomes the background color (black)
Color number 3 becomes the background color (orange)
The text becomes inverted

The text becomes invisible (blue)

The CLI/Shell window becomes n characters wide
Number of lines in the CLI/Shell window is setton
The left border is set at n pixels

The distance from the top is set at n pixels

‘When entering control sequences you must press the <Ctrl> key and the
corresponding letter key.

<Ctrl><h>
<Ctrl><i>
<Ctrl><j>
<Ctrl><k>
<Ctrl><l>
<Ctrl><m>
<Ctrl><n>
<Ctrl><0>
<Ctrl><x>
<Ctrl><\>

Deletes last character entered

Moves cursor one tab position to the right
Linefeed

Moves cursor up one line

Clears CLI/Shell window

Same as <Return>

Enables Alt character set

Enables normal character set

Deletes current line

Marks the end of a file

269

Index

AddBuffers 69, 101, 124, 253
Alias 253
ALL 26
AmigaDOS 4, 181, 203
Argument 14
Argument Counter(ArgC) 221
Argument Vector(ArgV) 221
Ask 85, 226, 253
Assign 67, 134, 253
Aux device (aux) 122
Avail. 112, 254
Background CLI 227
Background Task 215
Backspace<Backspace> key 9
BCPL 219
BindDrivers 74, 254
blitter 181
Boot blocks 23
BPTR 213
BPTR pointer 208
Break 65, 254
Breaking 131
C 221
CcDh 27, 254
ChangeTaskPri 64, 194, 228, 254
CIS 209
CLI 5,27
CLI Commands 219
CLI/Shell commands 253
Command Macros 95
Console Device (con) 107, 140
Control sequences 267
control characters. 160
Copy 31, 136, 184, 255
Ccos 209
cylinder 23
Data files 11
Date 71, 255
Delay 234
Delete 30, 255
Devices 205
Dir 10, 14, 24, 255
directory 27

DIRS %
Disable() 26
disk capacity 13
DiskChange 57, 2i6
DiskCopy 40, 101, 2i6
DiskDoctor 53, 2i6
Do/While 217
DOS 4
DOS Library 211
DOS prompt 8
DOSPackets 24
drawer name k)
Drive specifier 3
Echo 80, 256
ED 89, 194, 247, 248, 257
Edit 91, 247, 250, 257
Else 257,29
EndCLI 61, 257
EndIF 257,29
Ending the CLI T
EndSkip 25
o 8
Escape sequences 267
Eval 257
Execute 78, 257
Failat 81, 287
FastFileSystem 13
Fault 70, 2%
FF 23
FES yi]
Filenote 52,258
FindTask 23
FindTask() 2%
Format 22, 102,28
Gentenv 118, 25§
Global Vector Table 203, 211
Handlers 20
Help function i
IconX 254
If 259
If/Else/Endlf 8l

271

INDEX

Info 42,259
Initialize 22
input line 21
Input() 223
Install 43, 102, 259
INTER 27
Join 47, 259

Keyboard/ ASCII conversion. 141

Lab 260
List 34, 260
LoadwB 260
Lock 113, 261
main directory 28
MakeDir 30, 261
Mount 74, 120, 261
multitasking 181, 182
Names 34
NewCLI 58, 186, 261
NewCon device (newcon) 120
NewShell 114, 262
NOFFS 23
NOICONS 22
non-interactive 219
operating system 181, 219
parameter 15
Path 13, 66, 262
Pipe device (pipe) 76, 121
Preferences. 137
Preparations 6
Printer Device (prt) 106
printer script file 160
Prompt 72, 262
Protect 50, 117, 262
Protection bits 34
Quit 82, 263
RAD device (rad) 76, 120
RAM disk. 192
Raw Device (raw) 108
RelLabel 42, 102, 263
Relocatible Programs 207
Remrad 116
Rename 39, 263
Replace 238

272

AMIGADOS INSIDE AND OUT

Resident 116, 263
Resident system segments. 117
Root block 23
Run 61, 188, 209, 214, 264
Scratch 129
Script file processing 150
Script files. 149, 150, 162, 183
Search,. 47, 131, 264
Sectors 23
Segments 207
Serial Device (ser) 104
SetClock 71, 264
SetDate 52, 264
Setenv 118, 265
SetPatch 118, 265
SetTaskPri(). 230
Skip 265
Skip/Lab 86
Sort 49, 265
Speak device (speak) 76, 122
Stack 73, 265
Start address 225
Startup Sequence (1.2) 153
Status 62, 194, 225, 265
Strncpy 226
Subdirectories 11,25
Switch 15
Task 225
Taskpri 225,228
TaskStop 232
Time 255
text files 140
Type 45, 266
Value() 230
Version 87
Wait 87, 141, 266
Which 266
Why 70, 266
Wildcards 31

Optional Diskette

AmigaDOS
Inside and Out

Optlonal diskette i

For your convenience, the program listings contained in this book are
availible on an Amiga formatted floppy disk. You should order the diskett: if
you want to use the programs, but don't want to type them in from the

listings in the book.

All programs on the diskette have been fully tested. You can change the
roglzan%s for your particular needs. The diskette is available for $14.95 plus

$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclos¢ a
check, money order or credit card information. Mail your order to:

Abacus Software
5370 52nd Street SE
Grand Rapids, MI 49508

Or for fast service, call 616/698-0330.
Credit Card orders only 1-800-451-4319.

2 New Books for the Amiga! T

Amiga Disk Drives Inside and Out
A practical guide to Amiga's disk drive operations.

The most in-depth book available about the Amiga disk drives. It covers a
wide range of subjects from the technical aspects of the hardware, data
speed routines, to copy protection and computer viruses.

Floppy disk operation from the Workbench and CLI

BASIC: Loading, saving, sequential and relative files

DOS functions

File management: Block types, boot blocks, checksums, file headers,
hashmarks and protection methods

« Viruses: Protecting your boot block

+ Trackdisk.device: Commands, structures

» Trackdisk-task: Function and design Diskette access without DOS:
« MFM, GCR, Track design, blockheader, data blocks, checksums,

* coding and decoding, hardware registers, SYNC, interrupts

» Disk Monitor

iISBN 1-55755-042-5 Suggested Retail Price

Optional Program Diskette Available: $14.95

AmigaDOS Inside & Out

AmigaDOS covers the insides of AmigaDOS from the internal design
up to practical applications. There is also a detailed reference section
which helps you find information in a flash, both alphabetically and in
command groups.

Topics include:

» 68000 microprocessor architecture

* AmigaDOS - Tasks and handling

» Detailed explanations of CLI commands and their functions
» DOS editors ED and EDIT

+ Operating notes about the CLI (wildcards, shortening input
and output)

Amiga devices and how the CLI uses them

Batch files - what they are and how to write them
Changing the startup sequence

AmigaDOS and multitasking

Wiriting your own CLI commands

Reference to the CLI, ED and EDIT commands

Resetting priorities - the TaskPri command

Protecting your Amiga from unauthorized use

ISBN 1-55755-041-7 Suggested retail price: $19.95

Optional program diskette available: $14.95

-

Amica

Books

Great introductory book!

Amica for Beginners

A perfect introductory book if you're a new or prospective Amioa
owner. AmiGa for Beginners introduces you to Intuition (the
AMIGA's graphic interface), the mouse, the windows, the versatile
CLI—this first volume in our Amica serics explains every
practical aspect of the Amiga in plain English. Includes clear,
step-by-step instructions for common Amioa tasks. Asica for
Beginners is all the info you necd to get up and running with
your Amiaa 500, 1000 or 2000. Topics include: +Unpacking and
connecting the AMica’s components +Starting up your AMIOA
+Windows sFiles +Customizing the Workbench <Exploring the
Extras disk <Taking your first steps in the AMicaBASIC
programming language *BASIC graphics commands +BASIC
animation +AmoaDOS functions «Using the CLI to perform
“housckeeping” chores +First Aid appendix *Keyword appendix
«Technical appendix +Glossary. 200 pages. (Optional program
diskette not available).

(630) $16.95

“How-to” BASIC tutorial

AmicaBASIC—
Inside & Out

Above and beyond any BASIC tutorial you've ever scen. This
definitive $50-page volume will turn you into an AmigaBASIC
expent. AmMiGABASIC—Inside & Qut teaches you AMmica-
BASIC with a "hands-on,” program-oriented approach, and
explains the language in a clear, easy to understand style. Topics
include: *Fundamental concepts of BASIC «Complctely details
all AMigABASIC commands, with syntax and paramcters
*Graphic objects and color control <Interchange file format (IFF)
*Voice synthesis, sound & music «Sequential & random access
files «Complete Reference Section includes Glossary,
AMiaaBASIC Reference Guide, error message descriptions.
After you've leamned BASIC with AmicaBASIC—Inside &
Out, you'll have many useful, working programs: Video titling
program for high-quality OBJECT animation on your VCR tapes
«IFF-compatible paint program (lets you load in graphics created
on other graphic programs) ¢Bar graph & pie chart program
«Simple music synthesizer +Specch synthesis utility program
*Full-featured database.

550 pages.
(610) $24.95
(612) Optlonal program diskette $14.95

Insider's secrets/

Amica Tricks & Tips

A superb collection of quick hitters for all Amiga owners.
Patterned after our best-selling Tricks & Tips books for the
Commodore 64 & Commodore 128, Asmica Tricks & Tips
contains dozens of programming techniques and program listingg
that anvone with an AMiga computer can use, whether you're a
beginner or a seasoned programmer. AMica Tricks & Tips is
easy to understand, and lists program examples in BASIC. It's
packed with vital Amioa info: *Details on windowsand gadgets
*Using disk-resident fonts +Tips for printing hardcopy «Creating
yourown requesters *Accessing AMioa libraries from BASIC
*Reserving important 63000 memory +CLI command overview
+Getting the most out of the ED editor »Customizing your own
Workbench +Controlling Intuition «AMicaDOS functions +Hints
for cffective programming

(615)

(617) Optlonal program diskette

$19.95
$14.95

Guide to Amiga 68000 language
Amica Machine Language

The practical guide for learning how to program your Amioa in
ultrafast machine language. Used in conjunction with our
AssemPro AmiGa software package, Amica Machine
Language is a comprehensive introduction to 68000 assembler/
machine language programming. Topics include:

* 63000 microprocessor architecture «63000 address modes and
instruction set *Accessing the Amioa’s RAM memory, operating
system and multitasking capabilities sDetails the powerful Avioa
libraries for using AMioaDOS (input, output, disk and printer
operations) *Details Intuition (windows, screens, requesters,
pulldowri menus) «Speech and sound facilities from machine
language *Many useful programs listed and explained.

(660) $19.95

(662) Optlonal program diskette $14.95

Optional Program Diskettes

]

[}

=

» contain all of the programs found in these

- bocks—complete, error-free and ready to rus.

: Save yourself the time and and trouble of typing

= in the program listings. Each diskette: $14.95.

AR N RN A NREARANEEVNNEUNENRENS

More Amica books
coming soon!

Amiga Disk Drives Inside and Out
AmigaBASIC 3-D Graphics
Amiga 'C' For Beginners
Advanced Amiga 'C’

Z New Books for the Amiga!

Amiga System Programmer's Guide

Amiga System Programmer's Guide has a wealth of information about
what goes on inside the amiga. Whether you want to know about the
Amiga kernal or DOS commands, Amiga System Programmer's Guide
has the information you need, explained in a manner that you can
easily understand. Just a few of the things you will find inside:

EXEC Structure

Multitasking functions

/O management through devices and /O reguest
interrupts and resource management

RESET and its operation

DOS libraries

Disk Management

Detailed information about the CLI and its commands
Much more-—over 600 pages worth

e 6 8 0 0 0 8 o @

Suggested retail price: $34.95

Optional program diskette available: $14.95

AmigaDOS Inside & Out

AmigaDOS covers the insides of AmigaDOS from the internal design
up to practical applications. There is also a detailed reference seclion

which helps you find information in a flash, both alphabetically and in
command groups.

Topics include:

« 68000 microprocessor architecture

+ AmigaDOS - Tasks and handling

» Detailed explanations of CLI commands and their functions
« DOS editors ED and EDIT

« QOperating notes about the CLI (wildcards, shorening input
and output)

Amiga devices and how the CLI uses them

Batch files - what they are and how to write them
Changing the startup sequence

AmigaDOS and multitasking

Writing your own CLI commands

Reference to the CLI, ED and EDIT commands

Resetting priorities - the TaskPri command

Protecting your Amiga from unauthorized use

Suggested retail price: $19.95
Optional program diskette available: $14.95
5370 52nd St. SE Grand Rapids Mi 49508 - Order Toll Free 800-451-4319

BN

%,

\a
P RoressionaL
-~ " DataRetrieve

File your other databases away! :

Professional DataRetrieve, for the Amiga 500/1000/2000, is a friendly easy-to-operate
professional level data management package with the features of a relational data base system.

Pro(esslqnal DataRetrieve has complete relational data management capabilities. Define
relationships belween different files (one 1o one, one to many, many to many). Change
relations without file reorganization.

Professional DataRetrieve includes an extensive programming language which includes
more than 200 BASIC-like commands and functions and integrated program editor. Design
custom user interfaces with pulidown menus, icon selection, window activation and more.

Professional DataRelrieve can perform calculations and searches using complex
mathematical comparisons using over 80 funclions and constants.

Professional DataRetrieve's features:

Up to 8 files can be edited simultaneously

Maximum size of a data field 32,000 characters (lext {ields only)

Maximum number of data fields limited by RAM

Maximum record size of 64,000 characters

Maximum number of records disk dependant

(2,000,000,000 maximum)

Up 1o 80 index fields per hile

« Up 1o 6 field types - Text, Date, Time,
Numeric, IFF, Choice

« Unlimited number of searches and sub-
range criteria

« {ntegrated list editor and full-page printer
mask edilor

» Index accuracy selectable from 1-999
characlers

« Multiple file masks on-screen .

+ Easily create/edit on-screen masks forone § "‘%‘:ﬂ::’:.‘:t“t pat
or many files o'-:.j:t;""?“‘._v

« User-programmable pulldown menus WY

Operate the program from the mouse or from

the keyboard

Calculation fields, Date fields

IFF Graphics supported

Mass-storage-oriented file organization

Not Copy Protected, no dongle. can be installed on your hard drive

.

Abacusliiif

§370 52nd St. SE Grand Rapids Ml 49508 - Order Toll Free! 800-451-4319

ew Software

All Abacus software runs on the Amiga 500 Amiga
1000 or Amiga 2000. Each package is fully cimpanble
-Th-eldeal AMIGA wordprocessor
—

with our other products in the Amiga ne
__Niore than word pncessing...
TextPro Amrica upholds the true spirit of the AMiGa: A MIG A

it’s powerful, it has a surprising number of “extra™

features, but it’s also very easy to use. TextPro
Amica—the Ideal AMica word processor that proves This is one program for serigus AMica owner,

just how easy word processing can be. You can write BeckerText Amiga is more than a word pncessor. It
your first documents immediately, with a minimum of has all the features of TextPro Awmica, but italso has
learning—without even reading the manual. But features that you might not expect:

TextPro Amica is much more than a beginner’s
package. Ultra-fast onscreen formatting, graphic merge

+ Fast WYSIWYG formatting

capabilities, automatic hyphenation and many more » Calculations \yithin a text—.like having a syeadsheet
features make TextPro AMica ideal for the program anytime you want it
professional user as well. TextPro AMiGa features: + Templates for calculations in columns

« Line spacing options

» High-speed text input and editing + Auto-hyphenation and Auto-indexing

Functions accessible through menus or shortcut keys
Fast onscreen formatting

Automatic hyphenation

Versatile function key assignment

Save any section of an AMIGA screen & print as text
Loading and saving through the RS-232 interface
Multiple tab settings

Accepts IFF format graphics in texts

Extremely flexible printer adaptations. Printer drivers
for most popular dot-matrix printers included
Includes thorough manual

« Multiple-column printing, up to 5 columnson a single
page

» Online dictionary checks spelling in text asit's written

» Spell checker for interactive proofing of douments

= Up t0 999 characters per line (with scrollin)

+ Many more features for the professional

BeckerText AmMica
is a vital addition for
C programmers—it’s
an extremely flexible

« Not copy protected C editor. Whether

you're deleting,
TextPro Amica adding or duplicating
sets a new standard a block of C source-
for word processing 7'extpro code, Beckeijext
packag;s in its price AwmiGa does it all,
range. SO easy to automatically. And
use and modestly the online dictionary
priced that any acts as a C syntax
AMIGA owner can checker and finds
use it—so packed syntax errors in a
with advanced flash.

features, you can’t

pass itup.

Suggested retail price: $79.95

BeckerText AmiGa. When you need.more from your
word processor than just word processing.

Suggested retail price: $150.00

-l

— Imagine the perfect database
DataRetrieve

AMIGA

Imagine, for a moment, what the perfect database for
your AMIGA would have. You'd want power and speed,
for quick access to your information. An unlimited
amount of storage space. And you'd want it easy to
use—no baffling commands or file structures—with a
graphic interface that does your AMica justice.

: How to Order

Abacustlili] 5370 52nd Street SE Grand Rapids, MI 49508

All of our Amiga products—application and language
software, and our Amiga Reference Library~are available at
more than 2000 dealers in the U.S. and Canada. To find out
the location of the Abacus dealer nearest you, call:

— Not just for the experts

Enter DataRetrieve Amiga. It's unlike any other

database you can buy. Powerful, feature-packed, with !
the capacity for any business or personal application— S e O
mailing lists, inventory, billing, etc. Yet it’s so simple to

use, it’s startling. DataRetrieve AmiGa’s drop-down
menus help you to define files quickly. Then you con-
veniently enter information using on-screen templates.
DataRetrieve AMIGa takes advantage of the Amiga’s
multi-tasking capability for optimum processing speed.

DataRetrieve Amica features:

+ Open eight files simultaneously

« Password protection

« Edit files in memory

« Maximum of 80 index fields with variable precision

AMIGA

AssemPro AMiGa lets every Amiga owner enjoy the
benefits of fast machine language programming.

Because machine language programming isn’t just for
68000 experts. AssemPro Amica is easily learned and
user-friendly—it uses Amiga menus for simplicity. But
AssemPro Amica boasts a long list of professional

Toll Free 1-800-451-4319

8:30 am-8:00 pm Eastern Standard Time

Or order from Abacus directly by phone with your credit
card. We accept Mastercard, Visa and American Express.

Every one of our software packages is backed by the
Abacus 30-Day Guarantee—if for any reason you‘r}c,: not
satisfied by the software purchased directly from us, simply
return the product for a full refund of the purchase price.

(1-999 characters) features that eliminate the tedium and iti
' o repetition of M/L Order Blank
. Conven}ent search/select criteria (range, AND/OR progr ing. AssemPro AMIGA is the complete ———— e e
comparisons) s e : r --————————-———————--——————1
X . . developer’s package for writing of 68000 machine
. Text: date, ume, numeric and selection fields, IFF file language on the Amiga, complete with editor, debugger, Name: i
reading capablll”fth h f X for f disassembler and reassembler, AssemPro AMIGa is the P Address: I
» Exchange data with other software packages (for form b o0y iniroduction to machine langage development = 5 . i
letters, mailing lists, etc.) and programming. And it’s even got what you 68000 1 g City State Zip Country STI
« Control operations with keyboard or mouse experts need. i s Phone: as [
« Adjustable screen masks, up to 5000 x 5000 pixels <] Q one: / Se |
« Insert graphic elements into screen masks (e.g., AssemPro AMiGa features: -é o E Oty Name of product Price g 5 I
rectangles, circles, lines, patterns, etc.)) « Written completely in machine language, for ultra-fast -_g R E . T ;"_,‘ I
+ Screen masks support different text styles and sizes operation 1 8 oA B gh
. Multipl.e text ﬁel§i§ .with word make-up and « Integrated editor, debugger, disassembler, reassembler 3] -§. g\ N i
formatting capabilities o « Large operating system library 5 gu E = H) § kS I
+ Integrated printer masks and list editor. * Runs under CLI and Workbench T 354 5 a7 Fe !
+ Maximum filesize 2 Z‘mo"g:%‘gg‘ef * Produces either PC-relocatable or absolute code I S9&E 2 Mich. residents add 4% sales tax d é a '
+ Maximum data record size 64,000 characters * Macros possible for nearly any parameter (of different & vned 5 - . =
« Maximum data set 2 billion characters types) po Y E 23 % E £ Shlpfmg/llnndlmg charge aS |
. . £ data fields . g %o = (Forelgn Orders $12 per ltem) o 3
Unlimited number o + Error search function c SRE 53 I 2z
+ Maximum field size 32,000 characters « Cross-reference list 3 <Qs ¢ § Check/Money order TOTAL enclosed Y ooy
. * Menu-controlled conditional and repeated assembly > S Credit Card# § E
DataRetrieve AMIGa —it'll handle your data with the o Fyll 32-bit arithmetic T 58 as
speed and easy operation that you’ve come to expect * Debugger with 68020 single-step emulation @ S [1 [I l l { l ! I l l (l 8
from Abacus products for the AMIGA. * Runs on any Amioa with 512K and Kickstart 1.2, Expiration date

Suggested retail price: $79.95 suggested retail price: $99.95

be

) 15 o TR vi
' 1. | £13 0 Ts L1 Tt o Te) | RO U 1
1.1 The Task 0f DOSveriiiiieiiirecreernserneererecssnnierersnsesennes 4
1.2 The Workbench and the CLI......ccccoveiivueeieneniivneceenresennnens 5
; 1.3 PrEPATAtiONS ...ecvevreerreeirrressisseeeseeresseesseessnessresssesssessesnns 6
: 14 Introduction t0 the CLI..ccoiiieierisrensnisvessassseesiissesnsssens 8
1.5 The First Command..........ccoceererereercicnneereenssssneeesssseosenes 9
1.6 DIrectory SITUCIUTEcevverereneanererescrsserereseeraenennsnassenenens 11
1.7 Argument Templates......cccvervecrarrerersreressrneeensnsesseenses 13
1.8 Quitting the CLI.....ccooeereriiierereenrereseesssesereereeasssosssesens 17
2. The CLI COmmandsccoieevnerrrennrreencereencorensservniorernsnns 21
2.1 Disk and File Management..........ccovuecsrseceeransrsersnsscssacns 22
2.1.1 FOMMAL..ciievrerirrneneieiienreereosseerrscsnsseornsceessssssnsssrananseses 22
P25 W | NN 24
25 T T O 0 TN 27
2,14 MAKEDIL.....eviiveriirenneerseesssesseesessensssosrsrseorsssserssnenonsas 30
2 T T) RN 30
2.1.6 COPY ceurrrrrecerrernamvssnreessassesneesersrsnsssessasssossansessesanrannnne 31
2% Uy S 5 1. O 34
2.1.8 RENAME....coivrirrrirrrerererrecierinssrreeessrssesrsessasssrerssasessss 39
2.1.9 DIHSKCOPY . ieeerrrerererereerermvenennnmnrsresssesersecennsnnsessasssessnsens 40
2.1.10 Relabelauiiiiiriirieiceriireriineerescesiscrseesssesssnsossernsssesens 42
P2 U0 B N | 1o J U TRRRPRRT 42
P25 U8 W {117 1 | TR 43
2,113 TYPC.uuirircciiintirureceecrnrunsessesaenensiversnssnsssssessesssssnsasnnnss 45
225 U5 ¥ S (71 1 DO 47
20 0 ST o « U 47
2% U9 TN o] o 2SS 49
in a retrieval P20 8 W A % (] /= o1 SO 50
hotocopying, 2.1.18 FIlenOte....cvvverveereeerrereeecreernnrsseesssursoesesassssessssssorsessenss 52
ware or Data 2.1.19 SelDalE ..cvurirririrrreeerteriniereeerneresrrarerstererrnestrnnereneses 52
2.1.20 DiSKDOCION «.vviievueeerersnrrerserererssessnssvessersesssssersssessenes 53
_ 2.1.21 DiskChangecccovvvvvemuemmerinrrrreeseeeeeerrarereseereesrrsessnsenns 57
ncerning the 2.2 CLI System COMMANScveeereereersreersrneensrunsessessnnens 58
antee nor be 2.2.1 NeWCLL...ovvererivrirrnnerrnsenrseesersesseensserensssrasesasssnsossnnns 58
tained in this P22 N 2 11 1 51 (U 61
A2 T 1 | B SRR 61
224 SHALUS oevveeeeeiereeriiieeenessieeeesssasnereasssansesstnaesesnrasnsnnnns 62
d trademarks 2.2.5 ChangeTaskPri.....ccccueeiirieirueereeeesranessssesssnnsesseensseenns 64
22,0 BIEaAK ..uuiireirennrriiinieeniensiiineesssresersssennttniennsernissessensas 65
P2 D 1 | DU RUPOt 66
2.2 ASSIBI .reerieireenetiiieireerreieerreessrnesettaeernsenesannrerenes 67
iii
|
T——— " ~ = Iy

iv

229

22.10
22.11
22.12
22.13
22.14
2215
2.2.16
22.17

2.4.1

S al

phbhbrbbbbbhbphbdh LWWW
boaotrhiboioie-

B DD BN bbb ek bk et b ek i b
H

B

AGGBUITES ... veeereeerervenrvererereeeseosssssressssensssssessssvasnrases 69
WHY cociieriininenietninieneeiiastiir e ssssassessesssesessssssan 70
FaUl.uuiieuinviireenerreeserrarecrsasesessassssnasersneessanassenssssnsarans 70
Date...iiiiiiiruenicrcirnettnenetenesnesteotaniriacasstnsenssnsennseasnasssas 71
SEECIOCK cevevreerenieeierereerannnsiesereessenmeserencensssassonsesensenens 71
PIOMPL...cciiiiiceirmeineninenissiieiniiniciieinenestansssssssssssananrenss 72
SHACK ..evvvvreeneneeiiereeererensnereersacassnnsessosssersssnessarssessasans 73
BINADIVELS . cvveeierererenrenereeersensseseessnsseassssssessessssasnsses 74
MOURE. ceueieiiiirrrraeisetieseesaeersessvesernssssnsssrensesessessansessans 74
Script file CommAandsccoceeerrrvrverireerererarersrracserrraneenns 78
EXECULE .uviertnrrenerrensccreneerseresassorssrssassesrencnssessvorsansssraes 78
ECRO..ceutiieieienienrereresietenesetnessisessemmoscassosassntsasansrosasans 80
Fallat..cccvieeerenereeerreresssessceesessessacersasessnssonsesanssssssasesaes 81
QUIt.cuunieiereercerirrrssvesseesssesserserassonssessesessessarsssarassnsanes 82
If/EISE/ENdIf...ceeeunviierrnnecineecerinenorserenesseesnenerennsersennnnse 82
ASK . eeeeeieeiieieteetimnstniieeneansessssessesannsanesssesnannssssnsessnas 85
SKIP/LAD c.ceeeeennreeeeeenmenceerencensenrecnesrnrssessessssseseansseasens 86
WL caeirceiiierneermenncseeseessnsssnneceassesesssensesasssansanssensessees 87
VETSION . evevrrrurecreveerrarcceessnuceseosscssvoesanreorsssorsesnsonssarons 87
The EQIIOTS oivvvveeeireeneiernnecerenmurecsreeesesranssosssnncrsansesns 89
Reading text with ED......cccivcrinsiinisssraassacsansossssnssassns 89
Text handling with Edit.....ccocomeimriiiniiniiireniiiinninennnsncenees 91
Parameters O EQIt..cucuereecreereersrenscasearsensensenessosssnanseses 92
Starting Edif...cccceeveicsincciiisnisnnsinicsnersnsssansssesassessness 93
EdIting TeXt..c.veeermraenscsrercraserseosssesseessosaossocassonsssssssanns 94
Multiple Files ..ocoiierererrereeerneeireeceeserereaeeresesensassessanncans 95
Command MACTOS .eeveeseseececessstosssssssssesosorasansassssrsaressas 95
Quitting Edit....cccccocsrvernrecmensasrossssorsssmsnsorenssassensssessae 96
DIEVICES .. eirerreererececssesseirerassencsasassssenesssssaressansessssessssasnss 99
Floppy Disk Devices (df).....cocvvvriecccsariserscsvancassannsencaes 100
The RAM Disk Device (ram). ..101
The Parallel Device (par) 103
The Serial DeviCe (SET) .cvvureerenrrerrrenrarcrsresrrnrrsrennaansas 104
The Printer Device (PIt)...ccieecerseararsseecrencecsessecsansenrarnnes 106
The Console DeviCe (COMYauurerrrrrareererserserrseresnarasorosenes 107
The Raw DEvViCe (TaW)....ccceeereerverseseerannneesecsasnsonsonsaseres 108
WOIKDENCh 1.3eeeeeveveereeveeerseveremsrereresssenssosesssoresnnnss m
AVAL..eeeeiieenrreenieneeeerennmsensiersosensesssesssesnssnssssnssraes 112
FE . cerretecnectneresoncesessaemmessassssssesenssvossossnnannnnssnssssns 112
JIOCK 1 trrreraeennaeenrencerecnesensensosserrssvensessossnnasessessoonsanes 113
NEWSHELL...eeeerrerernreeerrareversrssnrrrensacsrosseasssssosssssassvens 114
ReEMIAW. . cieeeeirerenrrriecernenserenessereresnssscesssrensssssnsesosensans 116
RESIENL ... ceeeereeeerncrerenmernrnenececereeenmmsasseseesssnssaraseens 116
SEPALCN.cccverereereeeererrmrscnnossssenresetossnteresnossasaesssssasennes 118
S BLENV. . i cceccecieiteeeereserenssseesserssesssseesssennsrsssornnans 118
| (10} 1 D, S OSSR 119
Workbench 1.3 DEVICES...cevveurereenerierrernveereraesenssceoerenses 120
The NewCon device (NEWCON).....vevveererererssmrrseeameonassarans 120
The RAD device (Tad)......cccoreeecessresrrenaceerenssesseseresessnsee 120

---------------- 63 423 The Pipe device (PIPE) .rverrrrerererrererererenessseneassesesenenenss 121
---------------- 70 424 The Speak device (SPEak)eeeserrererreerssererereressaessresenss122
---------------- ; 42.5 The Aux deviCe (AUX)c.ceerrererereersrereressrersaensrsassesanress1 22
---------------- 7} ‘ 42,6 The FastFileSySteM......ccovrrererrrenesersrsearensassesssessrnseses1 23
---------------- 72 5. CLI Tricks and TipS..cc..ooecemmermesssssessssssssssssssnsescssen: 127
---------------- 73 : 51 Inputand Outputin the CLI.....cccovvruvimimcurersuneunernnnaens.128
---------------- 74 52 WICAS. ..ooseircrnnsanscnnasesesescnsssussensaseresssssssessninessnss 129
---------------- 74 53 BreakiNg.....ooceesreerecusecnncnrssnsessesssansssssnssnssesssnnssecenns 131
---------------- 78 i 54 The RAM Disk and the CLL.......ccoceueerereeerorenneecnnnensse133
---------------- 78 ‘ 5.5 Printing from the CLI.....cueuveunriresssemccsnnesensensseranneser. 136
---------------- 80 5.5.1 File printout with COPYceurrerurueeereercrrsssescrsennese- 136
---------------- 81 5.5.2 Redifecting OULPUL.......ceruercmrercecssarecesesensisnensssensensases 137
---------------- 82 5.5.3 Printer control Characters......cccceerseceserececssnsereransessaracsss 137
---------------- 82 5.6 Using the Console Device. vereereenen 140
---------------- gg 5.7 Using the Serial DEVICe.....crreererrersrerensenesessenssarereenss 143
................ 87 6. SCIPLFIIES..uurrsersresssessraressssssssaserssassnsessassssassasesarases 149
................ 87 6.1.1 What are SCTipt fileS.......ccererreruersesanssarceseeassassassesenness 150
................ 89 6.12 What script files 100K LiKe....covusecmeereressirencrssossessecesss150
.................. 89 6.1.3 Calling SCTIPt fileS...ovrnrurerreemmnsensersasessesassencssssonsensens 151
---------------- 91 6.14 Asimple eXample........cevveereuruearseceacnsosercrcsnsssasecsenness 151
---------------- 92 6.2.1 The custom startup sequence 156
----------------- 93 6.22 Workbench 1.3 startup sequences 158
---------------- 94 6.3.1 A special printer SCript file.........cccceereersennereneersnerneennes. 160
---------------- 95 6.3.2 Creating your own script files. 162
---------------- 95 6.3.3 Working Workbench 1.3............. ..165
---------------- 96 634 Starting the script file with the mouse 169
99 6.3.5 The Types SCHPL file..cuuerrrvnrmeeereesserceraersrereneensarenneeenees 170
--------------- '100 6.3.6 Putting everything into the RAM diskcccenrecrenerenee... 171
--------------- 101 6.4 Using Alias with NewShell Commands 173
----------------- 103 7. AmigaDOS and Multitaskingoeseueececsccusernsuececsensene-181
............... 104 7.1 What is Multitasking.......cceererereereserresersesaensessssenerees 182
--------------- 106 7.2 Multitasking with the CLI and Workbench.........ccn.......183
--------------- 107 7.3 Multitasking with NeWCLI......ccccvevereerruereeeersasasesasanns. 186
--------------- 108 74 Multitasking using RUDccceveeereenvsersecceearerensensenaees- 188
1 7.5 Using the CLL.....ccovuiiiiiiinnemnieissisnennennsessaseessnsssns 192
--------------- 1.6 ChangeTaskPri.....covcruveeeirinieerienniisnnnneinsicseenncneen e 194
--------------- ig 7.7 Whatto Watch For...ueuneuruecreecrenrensesesnacnsssanssenssesenense 197
............... 113 8. AmigaDOS INternalS.....ccscerrerrrrerecssecsnesnssssssenssasasensenss 203
vosseesnennnn 114 8.1 DOS, Devices, Handler, PACKELS.....cceruseersseseresersssseree. 204
--------------- 116 82 Relocatible Programs, Segments, BPTR Pointer..............207
--------------- 116 83 The CLIPIOZIAM.cceererererveneseerernesssesennenrnesereseenser209
--------------- 118 84 Internals of the DOS Libraryccecereeneeeeresnsaennenerennni2l 1
--------------- }ig 8.5 TheRunCommand.........ccecererererrvermrresneeneereessnneneneei214
............... 120 9. CLICOMMANGSoccurrmmmmmeriisercassssssrrnasscassnsansssosnsnns i 2 19
............... 120 9.1 CLI Commands in €ucevveeerneersenessaseernneesnaesasessananni 221
--------------- 120 9.2 TASK cvvereerenerrnnsresiossennessesssessssssssscressasssssssseassasnnnness D@
v

b rjM O s o - U

