Yashat
| & |

concurrent tasks and between clipboard buffers in the same task. This device follows the
t"sk-device message-port mode presented in Chapter 1 but sometimes uses an additiona
njemge port.

‘ Chapter 13 discusses the Timer device, which dlows a task to control timing opera-
tions. The Timer device manages timing events and the signals that initiate specific task
activities. Chapter 14 discusses the TrackDisk device, which dlows a task to control disk
operations. The TrackDisk device manages dl aspects of the Amiga disk system.

The appendix presents programming statements that define the Exec-support library
f‘lIJnctions presented in Chapter 2. You can use these examples to develop your own C

language functions. The index provides a useful guide to the information presented in this . - - '

volume. In addition, you can refer to the Table of Contents to find device structures,
filnctions, and commands.
"1 Although this book is not specificaly addressed to the subject of custom-built devices,
yi>u will find that the figures in this volume help you understand the form and concept of
ajdevice, and therefore help you formulate your own devices to add to the Amiga system.
‘ A detailed glossary and a set of useful script files, as well as detailed explanations of
other features of the Amiga C language device-programming system, have been added to -
the disk referenced at the end of Volume |. To obtain this disk, complete the order form
the back of Volume | and return it with your check or money order.

the Amiga Can Do

The capabilities of the Amiga computer can best be understood by considering an
example of an Amiga a work. Imagine that a new store in a shopping complex wanted to
use a computer to present passersby with an eye-catching, entertaining presentation in
orlda” to entice them into their store. With an Amiga, the presentation could aocompllsh
tne following: : -

» Offa an attractive, five-minute video presentation with a voice-over narration and
background music.

e Allow sdection of another video sequence, voice-over narration, or music sglection
* by presenting an easily understood range of keyboard choices.

* Allow aternative sdections with a mouse to point to objects on the screen.
e A for responses (for example, as part of a survey).
* Provide a laser color printout as a memento of the experience.

e Allow the store owners to monitor remonss through a modem in order to deter-
' mine the customer's interests. : :

« Provide the store owners with a permanent record of customer-Amiga interactions




AMIGA PROGRAMMER |S HANDBOOK

~

This type of interaction is entirely within the reach of the Amiga computer. The Amiga
can smultaneoudly produce stereo music from predigitalized audio tracks and a human-
quality voice from predigitalized soundtracks, respond to input, print out information, and
send infqrmation through the serid port to an attached modem.

To 4iake dl this smultaneous activity possible, the Amiga offers the following features:

* A |arge memory to accommodate the video and audio information, which can be
priproduced and stored on disk in compressed form. The memory requirements of
a typica five-minute audio-video presentation may require a Szable hard-disk drive.

The ability to move information quickly from high RAM locations into lower
RAM locations, where the hardware control chips can access that information and
present it to the user. ' : :

« A iFser-friendly interface, with quick, quiet operation.

ImuItitasking operating system, which alows many tasks to pass information

A
anll\ong them and to signa each other of the information's arrival.

. Th:e ability to accept input from a number of external sources (the keyboard, the

. Mc'uss gameport hardware, disk drives, and so on) simultaneously; to merge that

daia into the total input stream; and to act on those signds as requested, without
interfering with a presentation.

B A responsive and fast system, which can work with many different categories of
data a the same time.

"

. Th:e ability to continuously and unobtrusively adapt to a real-time environment,
- where the sequence of events is not predetermined but can change as quickly as the
user responds.

Amiga devices provide the means to program a complicated presentation such as this.
They dlqw you to teke full advantage of the Amigas impressive capabilities.

?lﬁ e Device System

Seven devices—the Audio, Input, Console, Timer, Keyboard, Gameport, and TrackDisk
devices—are ROM-resident. For the Amiga 1000, their interna routines, structures, and
data are loaded into ROM when the system is firgt booted from the Kickstart disk. For
the Amiga 500 and 2000, this information is dready in ROM. Five devices—the Narrator,
Serid, Paralel, Printer, and Clipboard devices—are disk-resident for al three machines,
simply because the Write Control Store ROM (256K) was fully consumed by the other
seven devices.

Programming Procedures

The programming procedures for accessng the device internal routines of dl 12 Amiga devices
are basicaly the same a task opens a device unit with an Exec library OpenDevice




cdl and closss it with an Exec library CloseDevice call. The firgt time a device unit is
operjed, the system automatically alocates and initializes a Device structure to manage the
device and a Unit structure to represent the device-unit message port. With shared access
modfe devices, the same Device and Unit structures are shared by any tasks that have the
devifee's unit open. The Device structure Ub_OpenCnt parameter and the Unit structure
unit! OpenCnt parameter are initialized to 1 when the device unit is opened. These
parameters are incremented or decremented by 1 each time a task opens or closes the
unitl. respectively.

A task describes its data needs by using an I/O request structure, which is an extended
Exec Messege structure containing information on what data the task needs, how fagt it
needs the data, where to place the data in memory, and how the task can interpret error
conjlitions. Generally spesking, when dispatched, the request automatically goes around a
loop. From the task's memory space, it goes into the device-unit request queue, into the
mejnory space of the device internal routines, back to the task reply-port queue, and findly
returns to the task's memory space. A task is not dlowed to access the 1/0 request structure
or ks data until this sequence is complete.

| However, the system provides command-dispatching mechanisms that can avoid queu-
ing a one or both ends of the transaction; if these mechanisms are used, the task receives
thd data sooner than it would with queuing at both ends of the transaction.

A task interacts with a device's internal routines by sending commands to those rou-
tines. Commands specify the type of operation required by the task. They are dispatched
with the Exec library DolO and SendlO functions and the individual device library BeginlO
functions; these are described in Chapter 2. In the most generd sense, a tesk is either reed-
ing data from a device or writing data to a device; amost dl other device operations lead up
to|these operations. Figure 1.1 illustrates general read-write operations.

| If atask uses a buffer in its own memory space to define data and then transmits the
ddato a device, the system is said to be executing a write operation. Here, the data origi-
nates in the task-defined buffer in the task's memory space, passes through the device's
memory space, and then is sent out to external hardware, where it is permanently stored.
Individual devices that have a write capability (the Audio, Serial, Parallel, Narrator,
Pointer, Clipboard, and TrackDisk devices) have at least one write command, which is
indicated by the word "WRITE" somewhere in the command name.

I If a task requests data from external hardware and uses a task-defined buffer to

receive the data, the system is sad to be executing a read operation. The data usualy -

pms through the device's memory space, passes into the task's memory space, and is
placed in a task-defined buffer for further access by the task. Individual devices that have

al read capability (the Serial, Parallel, Narrator, Keyboard, Gameport, Clipboard, and ;

T;rackDisk devices) have at least one read command, which is indicated by the word
"lREAD" somewhere in the command name.

i Devices that dlow read operations often have a device internal buffer in RAM that is
allocated and managed automatically by the device internal routines. The device is sad to
"own" that RAM space, even though its internal routines may be in ROM. Devices that
dlow write operations have a device internal buffer that is alocated and managed automat-
icdly by the device interna routines. This buffer aso is situated in RAM, even though

the device internal routines are sometimes entirely in ROM. The programmer deds only




RV AT VR

Xxv i |WAMIGA PROGRAMMER"'S HANDBOOK

Figure 1.1:
General
Read-Write
¥ Operations

“

External Hardware

Audio (write only)
Keyboard (read only)
Gameport Connectors (read only)
Disk Drives (read and write)
Serial Port (read and write)
Parallel Port (read and write)
Printer Ports (write only)

Read, i “-Write

Device Internal Routines

RRHH
Task-Defined Buffer 1] write Device Internal Buffers
¢ Temporary holding
. . Read location for data;
] - not all devices have
Task-Defined Buffer N}  wiite ] internal buffers

with task-defined buffers. Except for task-defined clearing and updating operations, the
device internal buffers are managed by the device internal routines.

Most devices return error values when something goes wrong during 1/O request pro-
cessing. Errors are returned in two ways. The OpenDevice, DolO, and WaitlO Exec
library functions return an error vaue as part of their function cal syntax (see Volume I).
In addition, detailed, device-specific error values are returned in replied I/O request struc-
tures. Generally spesking, a task need only test for a returned nonzero value in the func-
tion cdl to determine if the function executed successfully. If the vaue is not O, an error
condition occurred during /O processing, and the task should dedllocate dl memory and
notify the user or take some other appropriate action.

A more detailed level of error checking is dso available. Any device processing errors
will cause the return of a nonzero vaue in the 1/O request structure io_Error parameter.
For example, if an OpenDevice cdl fails, its 1/O request structure io_Error parameter is
st to IOERR_OPENFAIL to indicate that the device could not be opened. In most
cases, the io_Error value provides the task with dl the information it needs in order to

- determine what went wrong. The task can compare the io_Error value to the preset
ivaues in the INCLUDE files and thereby determine the reason the 1/0 request was




:
i
5
Bl
-d
1
I3
i

e el

T

unsuccessful. However, since the programmer must define the detailed comparison and
take proper corrective action, in most cases this step is not necessary.

ask-Device Sharing

Because the Amiga is a multitasking system, tasks can often share device units. The fd-
lowing guidelines were built into the system and should be observed for any devices you
may want to add:

 |If a device sends data to or receives data from externa hardware, the system gener-
aly provides the device with a mechanism that alows tasks to open it in exclusive

- access mode. The Serid and Parallel devices both work with hardware, so the sys
tem provides each with an explicit flag parameter bit that the task can st before
that device is opened; another task cannot open it until the first tak closes it.
Because the Printer device opens the Serial and Parallel devices indirectly and
sends data to a printer connected to the serid or parald port, it too operates in
exclusive access mode, as does each Gameport device unit. (Devices often have
more than one unit.) The TrackDisk device is dso an exclusive access mode device
by default.

 If a device never interacts directly with externa hardware except to read data, its
units can aways be shared among tasks. The Input, Console, Keyboard, Timer,
and Clipboard devices operate in this way. The Narrator device sends its daa to
the Audio device, so it too operates in shared access mode. Although the Audio
device sends data directly to externa hardware, it provides a complex set of rules
that dlow multiple tasks to share it aso.

T.he Amiga Programming Environment

Figure 12 illustrates the Amiga Release 12 programming environment. It shows three
disks: the Amiga 1000 Kickstart disk and two C language disks that dlow program devel-
opment. The arrangement of the last two disks applies equally wdl to dl three Amiga
machines. This discussion is presented in terms of the Lattice C language compiler, but it
is vdid for other C language compilers as well—only the names of the compile-and-link
programs will vary.

Certain files and information are required to support C language programming, and
they must be placed on disk at directory locations that the programming system will rec-
ognize. You should start with the Workbench disk in the interna drive and the C lan-
guage compiler disk in the externa drive. Tailor the contents of these disks whenever
possible to save disk space; the following sections present useful advice on what is essen-
tial and what can be trimmed.

In addition, if you have enough extra memory to create a RAM disk that is large
enough to hold most of the files needed for C language programming, you should cregte a
startup-sequence script file to create the RAM disk and the appropriate directories on it,
as well as transferring al required programming files to it.

xviti




R PR

L e R

XXViii

AMIGA P R 0 G R!

i \. Y E-".' s .

AMMER'S HANDBOOK

Rl Dsk

Figure 1.2:
Amiga
Programming
Environment

Write Control Store

Seven device libraries
Four other libraries
ROMwock debugger

Kickstart Disk

Cold bool information
Seven device libraries
Four other libraries
ROMwock debugger

Amiga RAM

First 256K Bytes

Second 256K Bytes

Extended Memory

Up to 8 Megabytes

External Disk
Diepctoras
rout

LIt
FOFLES:
THCLUDE -

c:

Total Amiga RAM consists of at least 512K of internal RAM and up to 8 megabytes
(f externa RAM. The first 512K of internal RAM can be used as chip memory (MEMF-
LCHIE see Volume 1), and the external RAM can be faa RAM (MEMF_EAST). An
efficient programming system should include at least 512K of internal RAM;256K is not

enough. Any additional RAM will dso be useful.

Thé Kickstart Disk

b The Amiga 1000 is adways cold-booted from the Kickstart disk, which contains severd
boot sectors and other information required to initialize the memory system and hardware
properly. The Kickstart disk dso contains most of the Amiga device and library internal
routines that you will use in your C language programs and the ROMwac debugger. All




g

'of this information is loaded into a 256K portion of ROM; this is a protected area of
memory referred to as WCS (Write Control Store) memory.

On the 500 and 2000 machines, the original Kickstart disk information was placed
permanently into ROM. Therefore, for these machines, the Kickstart operating system can
only be enhanced by using a ROM chip replacement. With the 1000 machine, once the
I Kickstart disk has loaded its operating-system information automatically, it is removed
| from the internal disk drive and the first C language programming disk is then inserted.

The Internal Disk

| The C language programming disk contained in the internal disk drive is similar to the
Commodore-supplied Workbench disk, but it has been stripped of files not needed for C
language programming. However, it must have these directories:

e The root directory. This directory contains any source files for which there is
enough memory; you can dso leave source files in the root directory on the exter-
na disk.

The DEVS: directory. This directory contains five device libraries not found on the

Kickstart disk. It dso contains the mountlist file, the system-configuration file, and
a printer directory for a group of printer drivers. You should eliminate any printer
drivers not needed for your programming. The mountlist file should reflect any
disk you want mounted into the system.

The L: directory. This directory contains three programs necessary for correct oper-
ation of the Amiga: the Disk-Vaidator program, which checks disks as they are
inserted and removed from a disk drive; the Ram-Handler program, which manages
the RAM disk in which your programming-related files are placed; and the Port-
Handler program, which manages the serid and parale ports.

e The LIBS: directory. This directory contains severa library files used in programs
that call certain built-in functions. The version.library file manages the library sys
tem and keeps track of different programming versions of various libraries.

The L: directory. This directory contains two libraries, iconlibrary and infolibrary,
which are not required unless you are using the Workbench functions (see Volume I)
to manage icons on the Workbench screen.

3

The S directory. This directory should contain dl the AmigaDOS script files you
need for your programming. In particular, it must contain the startup-sequence
script file, which defines al of the predefined startup operations that must take
place when the Amiga is first booted. This file can create the C language program-
ming RAM disk and copy programming-related files onto it. The startup-sequence
script file is dways executed when the stripped Workbench disk is first inserted and

after a keyboard reset sequence. Note that some third-party RAM expansion kits
automatically retain the contents of the RAM disk after a reset; with one of these
kits; the time-consuming reloading of the RAM disk will not occur each time you
encounter a crash and need to reset the machine.

.
*XXIX

|
o




AMIGA PROGRAMMER"'S HANDBOOK

B The C: directory. This direaory contains dl AmigaDOS operaing-system commands,
represented as compiled, executable files. These include the DIR command, the Disk-
Copy command, the new AddBufFers command, the Execute command, the Run
command, and many other commands necessary to manage files in the AmigaDOS
programming environment. You should eiminate any files you will not need dur-
ing programming; in addition, you can rename mos of these command files to save
typing time. For example, rename Dir to D, Execute to E, Run to R, and so on.

You should aso place your text-editor program file in the C: directory and copy
it to the RAM disk C: directory for greater editing speed. You can then cdl and
execute the editor program no matter what your current direaory happens to be.
(While you are doing this, rename your editor so that it is fag to type)

The T: directory. This directory contains any temporary files created by the system
or other executing programs. Most editor programs place backup text files here
automatically. A programmer does not generally access the files in this directory,
but takes comfort from knowing that certain files—for example, the last verson of
an edited source file—are dways there as backups. :

The FONTS: directory. This directory contains files that support specific fonts. '
Topaz is adways available directly from the system without appearing in the
FONTS: directory, so if you only require Topaz, you can erase al files in this
directory to free additiona disk space.

The External Disk

. The external disk contains the following directories:

e The root directory. This directory can contain any source files that you choose to

place on the externa disk drive. Source files can be on the internal disk, the exter-
nd disk, or the RAM disk. The only requirement is that the compile-and-link
script files refer to them where they are actudly located. If your RAM disk is large
enough, you can copy source files to it, together with dl other C language-related
programming files. If this is done, the C language compile-and-link sequence will
be greatly accelerated.

e The C: direaory. This directory contains the C language compiler and linking pro-

grams. For the Lattice compiler, these are cdled LCI, LC2, and Alink. LCI is the
first phase of the Lattice C language compiler; it uses your source file as input and
produces a quad file as output. The quad file is then used as input to LC2, which
produces an object file as output. Alink takes the objea file and produces an execut-
able file as output, together with an error file if any compiler errors occurred during
the compile-and-link sequence. The files used in this process and the resulting execut-
able program file will be placed automaticaly into the disk directory containing the
source file; therefore, the programming disk that contains your source files must
dways have space for these files.

e The LIB: direaory. This directory must contain object files and the information

needed to support a compiler's first- and second-pass programs (LCl and LC2).




This includes the Astartup.obj and Lstartup.obj compile-and-link files the amigalib
file; the debug.lib file (required only for debugging); and the Iclib file, which con-
tains compiler-specific functions provided by Lattice. These files are referenced by
the compile-and-link script file. The amigalib file contains the Exec-support library
functions discussed in Chapter 2. In contrast to the other libraries, it is a linked
library—a direct reference to it appears in the compile-and-link script file. There-
fore, when you define a C language program that references any functions in
amigalib, you must declare those functions as externa (EXTERN) library func-
tions; no OpenLibrary or OpenDevice cdls are then needed.

e The FD.FILES: directory. This directory contains descriptor files needed by the
compile-and-link programs (LCI, LC2, and Alink) to properly determine function-
vector offsets.

| « The INCLUDE: directory. This directory contains dl the built-in INCLUDE files you

will need for C language programming. The INCLUDE files contain structure defini-
tions, flag parameter bit names, other bit definitions, and dl other interfacing congtants
that the C language compiler needs in order to compile and link your program.

The details of the compile-and-link process are described more fully on the disk offered in
the back of Volume 1.

XXIT




| Device /0




DEVICE 1/0p 1

Introduction
L S

This chapter discusses the general aspects of device 1/0 and task-device interactions. It
presents important cuncepts about tasks and devices. All the functions and standard device
commands for the 12 Amiga devices are presented in this chapter also, as well as the
appropriate structures and the information in the device-rdaed INCLUDE files. Many of
the idess presented here are extensions of similar ideas in Chapter 1 of Volume I.

When you understand the concepts in this chapter, you will be wel on your way to
understanding the operation and programming of Amiga devices. You will be able to use the
predefined devices efficiently and to add and use your own devices in the Amiga system.

Task-Device Interactions

Figure 11 depicts the main interactions between a tak and a device. There are severd
keys to understanding this figure. The firs¢ key is understanding how every function

. works. The functions are discussed in great detail in Volume I. The second key is under-
standing how each command works. Commands are discussed in detail throughout this
volume. The third key is understanding the difference between queued 1/0 and quick
I/0. Figure 11 makes this difference obvious. The fourth key is understanding the differ-
ence between synchronous 1/0O and asynchronous /O, which is described in Volume | and
in this volume,

Note that you should study Figure 11 beside Figure 12 of Volume I. You will then
see that task-device interaction is nothing more than a specific instance of task-task inter-
action, where the routines of the second task are predefined in the system software and
arranged into a device library.

The usage and behavior of the MsgPort and Message structures and task signds dis-
cussed in Volume | apply equally well here. The most notable exceptions are as follows:

» Deviceroutine signding is handled internally and automaticdly by the device inter-
na routines. . :

e 1/O request replies are handled internally by the device internal routines using the
ReplyMsg function.

i : * The decison to process an 1/0O request as a quick /O request is made by the
device interna routines. You may request quick 1/O, but if the device is not dble to
process the request as such, it will be trested as a queued 1/O request.

3 If you study Figure 11 adong with the definitions of the 10Request, 10StdReq,
MsgPort, Message, and Unit structures, you will see how each task in the system can

* communicate with a sngle device unit.
Describing Figure 11 in terms of the IORequest and 10StdReq structures smplifies
the discussion. Some devices use these structures directly; however, some use them as sub-
structures in a device-specific 1/0O request structure. For example, the Serid device uses

e




AMIGA PROGRAMMER"'S HANDBOOK

Begnidee Quicklg [Checkid)
TASK STATEMENTS Ool0- ¢ , DEVICE INTERNAL
(define tosk buffers) Dodckl) {possi ROUTINES
AbortlO*** \NDS , (define device internal buffers)
ChecklO* . . — Device replies
Waitlo* Begm\o**ir uging Replymsy
WaitPort Sendio<* = _
Davice gels
reques] block
Lue‘tusg Rernowe wging GelMsg

[ =] | Signal
Signat = > «device
task o T 11/0 request
[F0 is § ¥, has arrived
complete 2 2 !
Lo — Jiost Request .
.
 Fhasre
Resel
AboriiQ
oll affect
* Synchronous 1/0 . . device
«+ Asynchronous 1/0O Fequast
=+> Synchronous or Asynchronous 1/O QUEUE

the |OExtSer structure, and the Paralld device uses the |OExtPar structure, both of
which have an 10StdReq substructure as their firg entry.

Figure 11 shows one task, represented by the large rectangle on the left, and one device
unit, represented by the large rectangle on the right. These rectangles represent Amiga C lan-
guage (or assembly language) programming Statements. They do not represent Task structures,
even though some of the task dtatements may include parameter initigization.

The large task rectangle represents al the task statements that define the task, includ-
ing those deding specificaly with the task-device interaction and the specifying, sending,
and processing of 1/O requests. In particular, these include the OpenDevice, CloseDevice,
BeginlO, DolO, SendlO, AbortlO, ChecklO, WaitlO, Wait, Remove, WaitPort, and
GetMsg function call statements. These statements also include al the structure parameter
definitions of the 10ORequest or I0OStdReq structure required to define each 1/0 request.
One of the most important parameters in these structures is the io_Data parameter, which
specifies the task-defined buffers used to pass data from the task to the device and from
the device to the task. Chapters 3-14 will discuss how each task defines and manages
these buffers.

The device-unit rectangle represents the internd routines of one device unit. Each device
unit uses the same st of interna device routines, shared by all tasks that cdl on dl units of
the device. The Device structure is used to manage the library of device interna routines. In
addition, the Unit structure is used to manage esch unit of the device; it provides a definition
of the device 1/0 request port for that device unit.




|
1

DEVICE 1/0

Each unit of each device dso has a sat of internal device buffers used to process the
I/0 requests coming from each tak in the system. These buffers are defined and con-
trolled by the device interna routines, they are not under your programming control.
They represent intermediate locations for the data passing back and forth between a task
and other areas in the system (in particular, externd hardware).

You can think of device internal routines as a st of predefined task routines corn-
tained in a predefined library. Recdl that a device library is managed by a Device struc-
ture, which is equivalent to a Library structure in the Exec software sysem. These device
routines may either be in ROM (ROM-resident device) or brought into RAM from disk
(disk-resdent device) when the device is opened with the OpenDevice cdl in the task dur-
ing the compilation process. Volume | explains how Library and Device structures are
defined and managed.

The device-unit 1/0 request port and the task reply port are represented in Figure
11 by smaler rectangles below the two large rectangles. These rectangles represent the
list of /O requests in each message port. A saries of queued /O requests is represented
by dill smaler rectangles.

The lines in the figure depict the flow of information between a programmer-defined
task and the device-unit internal routines. First, condder the line that proceeds from the task
rectangle to the bottom of the device request queue. The BeginlO, DolO, and SendlO func-
tions in the task rectangle send 1/0 requests from the task to the device-unit request queue.

The line that proceeds from the device rectangle to the bottom of the task reply-port
queue indicates 1/O requests replied internally by the built-in ReplyMsg function. These
were queued 1/O requests, and they are being replied to by the device internal routines
using the ReplyMsg function internally. The next line represents 1/O requests that had
the IOF_QUICK flag set. These requests were intended to operate as quick 1/0O, but the
device could not handle them in this way. Instead, the sysem made these queued 1/0O
requests, and they were dso replied to by the ReplyMsg function executing inside the
device internal routines.

/O Request Classes

Device 1/0 requests divide into two classes: queued I/O and quick I/O (most often
referred to here and in the Amiga documentation as QuicklO). A third class, for which
immediate-mode commands are used, operates automatically. It will be discussed in
Chapter 2.

Queued 1/0

In queued 1/O, each task sends a request to a specific device unit and that request is
queued in the device request queue for that device unit. 1/O requests are then processed
when they reach the top of the device request queue.

The list management is done internally and automaticaly by the device interna rou-
tines when they cal the Exec GetMsg function. The routines begin processing the 1/O
request at the top of the unit queue when the interna GetMsg function returns. Only

[ 7 o
A




i e i A A e s

4

T __m_. e e

AMGA PROGRAMMER"'S HANDBOOK

when the ReplyMsg function executes in the internal device routines will the requesting
task receive data back from the device.

Once the device replies to the 1/0 request, it is placed in the task reply-port queue.
The task can then execute a GetMsg (or Remove) function cal to access the replied 1/O
request.

Queued /O requests divide further into synchronous 1/0 requests (sent with the
DolO or BeginlO function) and asynchronous 1/0 requests (sent with the SendlO or
BeginlO function). Note that dl types of queued 1/O can cause signals to be sent to the
requesting task when the device 1/O is completed. The signd-passing mechanism is man-
aged by the task-defined MsgPort structure, which is a substructure inside the 10Request
or |10StdReq structure.

The task only needs to cdl the GetMsg function if it sends an asynchronous 1/0
request with the SendlO or BeginlO function. It must cdl GetMsg dfter it has verified
that the device has completed the 1/0O request and the replied 10 request has arrived at
the task reply port. The task can use the ChecklO function for this purpose.

In addition, if the task sends an asynchronous 1/0 request with the BeginlO or
SendlO function and calls the WaitlO function to wait for the reply message in the task
reply port, WaitlO will dso remove the replied 10 request from the task reply-port queue.

On the other hand, if the task sends a synchronous 1/0 request with either the BeginlO.

or DolO functions, these two functions will adso perform the job of pulling the replied
1/0 request from the task reply-port queue.

The Exec Wait function dlows any task to wait for 1/O request completion signals.
In addition, the Wait Port function allows each task to wait for the reply of an /O
request. See Volume | for the distinctions between these two methods. '

QuickfO

The second mgjor class of 1/O is quick 1/0, which will be referred to throughout this
volume as QuicklO. With successful QuicklO, no device queuing is done for the 1/O
request. Instead, the IOF_QUICK flag parameter (io_Flags) of the IORequest structure
tells the device that the requesting task wants the 1/0 to be done quickly. The device will
perform the /O immediately if possible and send the result back to the requesting task.

If the 1/O request is successful, it is not placed in the task reply-port queue, nor is
the task signaed of the completion of I/O; dfter all, the required data comes back immedi-
ately and the task does not need a signdl. If, on the other hand, the device cannot perform
the 1/O as QuicklO, the request will be queued in the device-unit 1/0 request queue and
will be trested like any other queued request. Each device decides whether QuicklO is
possible based on current conditions in the system. If the device is not currently busy,
QuicklO usually can occur as requested.

Both the task and the device generally have only one I/O request queue, athough the
task can have any number of reply-port queues. The parameters in the 1ORequest,
10StdReq, MsgPort, Message, and Unit structures determine where each 1/0 request is
sent and then replied.

The device-unit request queue includes al 1/O requests coming from this partic-
ular task and from any other task in the system that sends requests to that device unit.
Each task reply-port queue contains al /O requests replied by this device and any other

ﬂ_




SR UPP PR SV}

DEVICE 1/0 i3

i

Sl 13- WM 4 ey A q

A ot e v

devices in the system that reply to this port. The reply port is dways specified by the
mn_ReplyPort parameter of the Message substructure in the 10Request or |OStdReq
structure.

The device-unit queue maintains a list of dl 1/0 requests coming from this task and
any other tasks in the system that communicate with this particular unit of the device.
Each time an 1/0 request arrives in the device-unit queue, the device interna routines are
automatically signded of its arrival. The device-routine signaling mechanism is handled
internally and automatically by the device interna routines.

The device-unit queue is managed by a set of two standard device commands
(CMD_FLUSH and CMD_RESET) and one Exec function (AbortlO). Each device chap-
ter discusses these commands and functions.

Ilnteractions with Multiple Ports and Units

This section explains, with the ad of two diagrams, how multiple reply ports and multi-
ple device units are handled in the Amiga system.

Multiple Reply Ports

Figure 1.2:
Task-Device
Interaction with
Three Reply

' Ports

Figure 12 shows a task working with one unit of a device but using a number of reply
ports to handle different types of data coming back from the device. This could be a use-
ful configuration if, for example, you were working with the Seria device and wanted to
place data in different categories.

Begmid QuicklC [ChachiD)
TASK STATEMENTS °oi ] DEVICE INTERNAL
AbortlO —‘?"—@—J—\ el {possible ROUTINES
ChecklO Gl to Syl Device replas
WaitlO B0 vring Rephyiiag
WaitPort Sendi0[-— doce cete
GelMag o GeiMsg or GeiMzg o regquesl Elnck
Woll  Pemove  Wait | Remavs  Wolt | Remave using Galliag ,
|
BN [ s |
si
Speo) % % % ‘C.: 10;\.":'.
H HE
I 4 4 |
| H t
L et} — — —!
\Hush
Rezet
Ao L)
/




:

AMIGA PROGRAMMER"'S HANDBOOK

Again the two large rectangles represent the task routines and the device internal rou-
tines. Beow the task rectangle, however, are three task reply ports, each with its own st
of replied 1/0 requests. Each of these reply ports will receive a different category of
replied 1/O requests when the device is finished processing the 1/O requests in that partic-
ular category.

You have complete control over which reply goes to which reply port. Each task can
define this situation by properly specifying the mn_ReplyPort parameter in the Message
substructure of the 10Request or 10StdReq structure when that task initializes these
structures before sending a command to the device. Each task can dso set up three differ-
ent task-defined buffers by using the io_Data pointer parameter in the IORequest or
I0StdReq structure.

Note that other than the difference involving the mn_ReplyPort parameter, the task-
device interaction defined by Figure 12 follows the same logic as that in Figure 1.1

Multiple Units

Figure 13 shows one tak working with multiple units of a single device. Each device
unit could be replying to one or more task reply ports. This is a useful configuration if,
for example, you are working with dl four units of the TrackDisk device and you want to
~ place data from each disk drive in different task reply ports and associated data buffers.

Queue Behavior
This section explains, with the use of two diagrams, how task reply-port queues and
device 1/0 request queues are used in the Amiga system.

Task Reply-Port Queue Behavior

Figure 14 illustrates how a task reply port behaves as one or more devices send their
request replies (IORequest and 10StdReq structures) to it.

TASK STATEMENTS i ]
"] - " 78 "
————m Buien 170
AborttO o I
Check! 0 DEVICE DEVICE DEVICE DEVICE
Woitio - INTERNAL INTERNAL INTERNAL INTERNAL
WaitPort " Hae ( ROUTINES | [T ROUTINES | [ ROUTINES | {1 ROUTINES
; . ot cunuin o owons Unit 1 Unit_2 Unit_3 Unit 4
Figure 1.3: ¥ = i I i ¥ T
.
Task-Device v} g ey o Py oY
Interaction with e g ¢ =5 oy e =
. . T
Multiple Units b3 I I
and Reply Ports

Fh
Bef




TPV S

© i T e s e e

- AT e DO e B

DEVICE 1/0

Figure 1,4:
Behavior of a
Task's I1/10
Reply-Port
Queue

The task's reply port shows the reply-port queue at one particular point in time. Ini-
tidly, it contains five 1/0 requests. Each of these could have come from any of the devices
in the sysem whose 10Request or 10StdReq structure (or other device-specific 1/O-related
structure) had an mn_ReplyPort parameter that specified a pointer to this task reply port.

The state of the reply-port queue after the GetMsg function finishes execution and
returns is shown next. If the origind 1/O request was an asynchronous 1/O reguest sent
with either the SendlO or BeginlO function, then the GetMsg function can be used to
remove it from the task reply port. If it was an asynchronous I/0O request sent with the
SendlO function and the sending task caled the WaitlO function, then the WaitlO func-
tion will wait for its return and aso remove it from the task reply-port queue. If the origi-
nal 1/0 request was a synchronous 1/0 request sent with the DolO function, then the
DolO function will automaticaly remove it from the task reply port when a reply is sent
by the device.

The next diagram in Figure 14 shows the condition of the task reply-port queue dter the
Remove function has removed |ORequest4 from the task reply-port queue. You normdly only
use this function if your task has one reply port. Firgt the task would cdl the ChecklO func-
tion to see if the 1/0O request was presant in the task reply-port queue. Once the task veifies
that the reply message is present in the queue and it gets a pointer to the IORequest structure,
the task can cdl the Remove function to remove it from the queue. The ChecklO-Remove
combination is equivdent to the operation of the GetMsy function.

The lagt diagram in the figure shows the state of the task réply-port queue after the
device completes and replies another 1/0 request. |ORequest6 has been added at the bot-
tom of the task reply-port queue. It could have come from any of the devices in the sys
tem that processed an 1/O request whose reply was addressed to this task reply port.

After Device Completes

Original Queue After GetMsg After Remove Another Request

Task Reply Task Reply Task Reply Task Reply
Port Port Port Port

] —_—

j IORequesti IORequest2 \ IIORe;ueSIZ | flORequest2 |

_— ! —_—

[ 10Request2 | IORequest3 | IORequest3 | | 10Request3 |

|

——

| IORequest3 | IORequest4 | IORequest5 | | IORequest5 |

| JQRequest4 | lORequest5 | 1 IORequest6 |

| IORequest5

7




8IJAMIGA PROGRAMMER"'S HANDBOOK

Device Message-Port Queue Behavior

Figure 15 illustrates how a device unit's message port behaves as one or more tasks send
their 1/0 requests to it.

First you see the device's message port showing the 1/0 request queue at one partic-
ular point in time. Initidly, there are five I/O requests queued; each could have come
from any of the tasks in the system whose IORequest or 10StdReq structures (or device-
specific 1/O-related structures) were sent to that device.

Next you see the dtate of the queue after the device processes the firg request. 10Re-
quest 1 has been removed from the queue—the device internally uses the equivaent of the
GetMsg function to remove it—and the device is in the process of satisfying the request.

The next diagram shows the condition of the queue after the BeginlO, DolO, or
SendlO function has queued another 1/0 request (IORequest6) in the device request
queue. This request could have come from any task in the system that was communicat-
ing with the device unit.

The next diagram shows the state of the queue after a task cals the AbortlO func-
tion to remove a pending 1/0 request that is no longer needed. In this case, |ORequest3
was removed. The last diagram shows the state of the queue after the CMD_FLUSH or
CMD_RESET command has finished executing. The device request queue has been emp-

tied of dl pending 1/0 requests, and they must be explicitly sent again for the device to

process them.

' Shared Access versus Exclusive Access

Figure 1.5:

Behavior of a
Device's 110

Message-Port
Queue

Figure 16 illustrates the distinction between shared and exclusive device access when
more than one task tries to access a specific unit of a device. Here you see three tasks
trying to access the internal routines of a device.

Any device that can be accessed in both shared and exclusive modes has a flag
parameter bit that specifies the type of task access requested for that device. For instance,
the Serid device has the SERF_SHARED flag parameter bit, which tells the Serid device

After Device Processes  After BeginlO,

Original Queue First Request DolO, or SendtO After AbortlO After Flush or Reset
Device Device Device Device Device
Message Port Message Port Message Port Message Port Message Port
1

10Requesl | llClReuuest EI
1

I0Reavest 2 FOPwauesl J feeauesl 2
iCRanuest 3 WRequest & )

IR equest ‘4 IIDRewI 5[ I0Requesl 5

|DReques! 5

10Request 6

i

RCTI

PR

R o




S L

i
]
i
1

DEVICE /O

Figure 1.6:
Difference
between Shared
and Exclusive

k Access

TS WL S CREAES OF R

internal routines that you want to open the device in shared access mode. Note that the
default for dl devices is not dways exclusive access.

The top of Figure 16 shows how these three tasks interact with the device internal
routines when dl three tasks open the device unit with the flag parameter bit for shared
access mode specified. Here each of the these tasks sends 1/0 requests to the device inter-
na routines (using BeginlO, DolO, or SendlO) after they have opened the device with
the OpenDevice function.

Task switching is not prevented while these three tasks send 1/0 requests and receive
replies for the device-generated data. After the first task cdls OpenDevice for that unit of
the device, another task can dso cdl OpenDevice and request data from that unit. There
is no need for Taskl to cose the device unit before Task2 and Task3 can open the device
and send 1/O reguests to the same unit.

Exclusve access operates in a different way, as the three diagrams at the bottom of
Figure 16 show. Here Taskl must finish using the device before Task2 and Task3 can
gain access to it. All of the BeginlO, DolO, and SendlO functions in Taskl must be sur-
rounded by a pair of OpenDevice and CloseDevice function cals before task switching
dlows another task to access that unit of the device.

This does not mean that task switching is prevented; it only means that if a task switch
occurs before Taskl has closed the device unit,-any attempt by Task2 or Task3 to open that
same device unit will result in a falure to open. The task will return IOERR_ OPENFAIL
a lesst until the firg task regains the CPU and closes the device unit. In Figure 1.6, Task2
will not be able to open the device until Taskl regains the CPU, executes a CloseDevice

| Task2 |
\ o\

j taskl \z~ DS\I’/]Iic'[:e ~Z\  Task3 )

Shared Mode Access

Device
Unit

| Taskl \Z

|  Task2 |
1

Device
Unit

Device
Unit

Exctusive Mode Access

~Z_ [ Task3 ]




e N b LR A M Ay

.\%
¥
1

i = e vl e T b e

i
E

[P ET ST -

o e D v ineee i e D e e

1 Q AMIGA PROGRAMMER"S HANDBOOK

- cdl, and doses that unit of the device. Once Taskl doses the device, the OpenDevice cdl in

Task2 will succeed when Task2 once again regains the CPU.

These idess are important in developing your programming logic. You must decide
on a task-device unit opening and closing sequence for al your tasks. First you must
decide the access mode for each device unit you intend to open in each task; then you
must decide when you want to open and close each device unit.

Both the Device and the Unit structures have a structure parameter that keeps track
of the number of tasks that have opened a device unit and subsequently closed it. In the
Device structure this parameter is cdled lib_OpenCnt, and in the Unit structure, it is
cdled unit_OpenCnt. The system works with these parameters, together with the type of
access you spedify in your programs, to determine what action to take when a task tries to
open a device unit.

One way to smplify such decisions is to use dl avalable units of a device to avoid
task collisons for the same device unit. For example, for the TrackDisk device, if you
have two or more disk drives you can establish a strategy for using those drives in the
most efficent manner. The Audio device discussed in Chapter 3 provides a good illustra
tion of using four units simultaneoudy to produce complex stereo sounds.

Miultitasking and /O Request Processing

Figure 17 illustrates the details of multitasking when a series of tasks sends a series of
1/0 requests to a specific device unit. This figure shows the difference between device
processing for asynchronous and synchronous I/O requests.

Three tasks (Taskl, Task2, and Task3) are communicating with the same device unit.
A typica example would be three tasks communicating with the Seria device, each trying
to get its own category of data from the Amiga serid port. Taskl needs to send three 1/0O
requests to the device unit: 10Requestll, 10Requestl2, and 10Requestl3, shorthand
notations for the complete |IORequest or IOStdReq (or, for the Serial device, 10EXxtSer)
structure used to define the 1/O request. Task2 needs to send 10Request2lj |ORequest22,
and |ORequest23 to the device unit. Task3 needs to send 10Request31, 10Request32, and
|ORequest33.

In this example, Taskl has the highest task priority (In_Pri = 60), Task2 the
next-highest (In_Pri = 55), and Task3 the lowest (In_Pri = 50). Each of these tasks has
opened the device unit with an OpenDevice function call, and each task opened the device
unit in shared access mode. These arrangements dlow for task switching and device shar-
ing. Findly, the device request queue is presently occupied by a number of queued 1/O
requests previoudy placed there by other tasks in the system.

The three tasks go through the following series of steps:

1. Taskl issues a DolO cal to send 10Requestll. Recal that DolO initiates a syn-
chronous 1/0 request. Because the device-unit request queue is not empty in this
example, the device unit will not be ale to immediately service this request; it will
be queued behind other dready present I/O requests. Because 10Requestll cannot
be processed immediately and DolO cannot return in Taskl, Taskl will be blocked.
The next-higher priority task will teke over; by assumption, this is Task2.

- - T

Fi\
Multit




Taski (in_Pri=60) Tosk2 (In_Pri=55) Task3 (tn_Pri=50)
DolO(In)(task blocked)—I-——}-~DolO(lj,)(tosk blocked) — DolO(h.)(task blocked)
SendiO (112 ——— -
go on to execute —f— (1> finished)
other Taski statements
(In finished) SendlO (la)
go on to execute
other Tosk2 statements
(I* finished)—— —«SendiO (ljj
go on to execute
other Task3 statements
00l0(l,3)(tosk blocked)— DolO(l,J(losk blocked) DolO(lv)(task blocked)
In Request f—=— In buffer Ia Request |—=4 U. buffer 1J1 Request la buffer
iy Request |—=q 1« buffer la Request [—=q 112 buffer lu Request f— I« buffer
s Request Isa buffer \n Request 12s buffer I« Request In buffer
L L o N
Task 1/0 Task 1/0
Reply Buffers
Queue
Device
In Request
131 Request
131 Request
Figure 1.7: ' ||.1: Request Device
. . 1. Request 1/0 Request
Multitasking and T Request Queue
/0 Request o1 Request
Processing 12:1 Request
; : Il Request

2. Task2 gets control of the machine and sends the 10Request21 synchronous 1/O re-
quest to the same device unit using a DolO function cdl in Task2. |IORequest21 is
queued behind 10Requestll and other requests aready in the queue. Task2 will
now be blocked.

3. Task3 gets control of the machine and sends the IORequest31 synchronous request
to the device unit, using a DolO cal. This request will now be queued behind
IORequestll, 10Request21j and other 1/O requests dready in the queue. Task3 .
will now be blocked.

Now assume that the device internal routines just finished with 10Requestll. (This
. is an assumption about the sequence and timing of events in the system, not something
you can directly control. Note that the previoudy queued requests must dso be processed




!
1
i

e bl e

ol e Db et by e

152 1N WAL L b 4 e S e e ap —gn 1 e

12 AMGA PROGRAMMER"'S HANDBOOK

before |ORequestll is processed.) The previoudy blocked Taskl can then get control of
the CPU; Taskl has been waiting on 10Requestll, and the device interna routines have
sgnded that 1ORequestll is completed. Taskl receives the IORequestll request in its
task reply-port queue and acts on the arrival signa. This gives CPU control to Taskl,
indicated by the dotted line between the Taskl and Task3 rectangles. The device internal
routines will sgnad Taskl (using the equivalent of the PutMsg function's signal mecha
nism) and Taskl can now go on to execute other tak statements.

Now assume that the next task statement in Taskl is a SendlO function call. This
cdl sends 1ORequestl2 (asynchronous) to the queue, behind IORequest21, |ORequest3l,
and other previoudy queued I/O reguests. (Note that IORequestll is no longer in the
device-unit request queue).

Because SendlO sends an asynchronous 1/0 request, Taskl can now go on to execute
other task statements. Here, however, the device unit has just finished processing |ORe-
quest21. (This is again an assumption about the specific sequence and timing of events
over which you have no direct control.)

Now that 10Request21 is completed, Task2, the next-highest priority task, can once
again gain control of the CPU, as shown by the dotted line between the Taskl and Task2
rectangles. Assume that the next executable task statement in Task2 is a SendlO function
call; the process continues from here in the same way.

If you study this diagram dong with the discussions of DolO, SendlO, and other 1/0
functions in Volume I, you can see how both asynchronous 1/0O requests and synchronous
1/0 requests are handled in the Amiga system. These considerations have a bearing on the

_design of your programs and the design of dl of the tasks that make up those programs.

Nﬁiga Devices

Figure 18 shows the relationship between a task and the 12 predefined Amiga devices in
the Amiga system. Keep in mind that the task depicted by the large rectangle represents
any task in the system, either a programmer-defined task or a system task.

The large rectangle represents al the task statements within that task, including those
that communicate directly with the devices. These device statements include al Open-
Device, CloseDevice, BeginlO, DolO, SendlO, AbortlO, WaitlO, ChecklO, WaitPort,
GetMsg, Remove, and Wait function cdls that are directed a a device-unit 1/0 request
gueue or a task 1/0O request reply-port queue.

Twelve smaller rectangles in the figure represent specific units of a device. Remember
that each device could be shown as many rectangles, eech representing a different unit of
the device, with as many rectangles as that device has adlowable units. For example, the
rectangle for the TrackDisk device could be expanded to four rectangles, one for each
of its four possible units. In addition, the Trandator library, which is not a device, is
dso shown as a rectangle; it is included because it works directly with the Audio and
Narrator devices.

The most important things to note about Figure 18 are as follows

=« With enough memory, each task can open up to 12 predefined devices for simulta-
" neous access as those tasks each switch in and out of execution. A task may be able

Té
Re!
for




+
H
d

P e E i T

L

Py s

DEMICE 11O g1 3

—Opn
%ma Calo
Cwen
S Dane |
Swrial Davica o %o | Printer | _9en T pacqtier Timer
Saad Dence Sand Gievice Devrce
[T LN S T Bata 1 it 2 Unis
P— Norrotor i '
Dxeﬁlr::ne g_g mm. l-m Data od Outer ln-o Data
E; TrachDisk
_lsne pate = jo—m ] Dedce
SET OF TASKS THAT COMMUNICATE WITH DEVICES 1 + Uit
Transiolor | tpen= i
i. Librory ~ |iren | Each task has a set of programmer-defined buffers ?2
that are used for data coming from (Read) " Soboma
- . . A ipboar
1!_”“ ond going to (Write) device internal buffers H D,':c:
hudio Ei 7 T
H . Device "
Figure 1.8: L] au i mee Dota Im:‘ iw Cata Im s
Task-Device Conpole |0 tpwl 2ow_ [Ticey baard Garne porl
. . Davics Saind Davice Serat Device Devies
Relationships Doto ' anit Bota Vit e ‘m
for AH Amiga | | 1 Sana_Dsly — 1
. wan
Devices o
Sena_Dann
Inbyilgn Fndomy

to open more than one unit of each of the 12 devices, in fact, it may be able to
open dl units of al devices. The main limitation is memory. If dl units of al
devices are open and the system is very active, there will be a lot of queued 1/0
requests, which use a lot of RAM. The number of units dlowed for each device is
indicated in the smal rectangle representing that device.

¢ The double-sided arrows from the large task rectangle to the smdl device-unit rec-
tangles represent task-device interactions—the transfer of adl commands and data
between the task and the device internal routines brought about by the functions
executing within the task. In particular, these arrows represent the OpenDevice,
CloseDevice, BeginlO, DolO, and SendlO function cdls.

e The arrows labdled Open and Send Data depict the internal operations and effects
of one device on another. For example, the Console device shows an Open arrow
running to the Input device. This means that the Console device will automaticaly
open the Input device when any task issues an OpenDevice cdl to open the Con-
sle device. The arrows labeled Send Data eech have a similar meaning; when the
Console device indirectly opens the Input device, the Input device can send data to
the Console device. This device-to-device data transfer is handled automatically by
the device interna routines.

Study dl the relationships depicted in Figure 1.8. These interactions will be dis-
cussed in later chapters.




- UMJAMGA PROGRAMMER"'S HANDBOOK

PR IR,

it e e e i i L

Samin vt s Al e e

RS P

Standard Device Commands

Table 11 summarizes the standard commands for each device in the sysem. The Amiga
provides a maximum of nine standard commands for each device. Note that the number
of standard commands actually implemented varies from device to device.

These commands were briefly discussed in Volume |. The main characteristics of
each are again presented here:

e CMD_CLEAR clears a! internd device buffers. Recal that each device has a st
of internal buffers that it uses to manage data once control is indde the device
interna routines. The CMD_CLEAR command tells the system to zero dl bytes

in eech of the device-unit internal buffers. CMD_CLEAR has no effect on the
task-defined  buffers.

e CMD_FLUSH tels the system to abort dl pending I/O requests in the device-unit
request queue. Once these requests are flushed, a task will have to initidize the 1/0
request structures if it needs to send those requests again.

e CMD_INWLID tells the system that the task is sending an invalid command. See
Chapter 11.

e CMD_READ tdls the system to read a number of data bytes from the device
internal buffers into one or more of the task-defined buffers. The number of bytes
to read is usualy specified by the 10StdReq structure io_Length parameter; the
system usualy places the number of bytes actualy read into the 10StdReq struc-
ture io_Actual parameter. There are exceptions to these rules; the details of using
this command vary from device to device.

e CMD_RESET tdls the sysem to reset the device unit. It completely reinitializes
the device internal routines, returning them to their default configuration.
CMD_RESET ds0 aborts dl queued and currently active 1/O requests, cleans up

any daa structures used by the device interna routines, and resets any related
hardware registers in the system.

e CMD_START tells the system to restart execution of a device command that was
previoudy stopped with the CMD_STOP command. The restarted command then
resumes where it stopped. In some cases, however, a command cannot restart a the

precise data byte at which it was stopped; the system then chooses another point at
which to restart the command.

e CMD_STOP tdls the system to immediately stop the data processing currently
being done by the device unit. It will stop the processing a the first opportunity.
All 1/O requests continue to queue, but the device unit stops processing them. The
device request queue can grow quickly if a lot of tak and system activity occurs
while the device is stopped; if this happens, a great dedl of memory may be used
by the queued I/O request structures. The command is useful for devices that
require Amiga user intervention (printers, plotters, and data networks, for example).

Table
Sta
Comn
fot
Amiga |

R

i



fitmahy eyt . . e -

T T P

BIPPHL

1

Wy

[eHsg

S

SR

s

pless

“ORLEN

1 > 1>

11 ™~ S - Y

LeogA -

1

"

dor

1

als ©©

IP @D

pI2 030

o, Ny

Z1IdM

zozn

TIVLS

T 38

ol VAN

HSNd

avd T o

e e

cNvWlvo o

Y

it gt

-3
— T
o3
23
aS
T

Commands

for Each
Amiga Device

NN o




R - T SISO

AMIGA PR OGR A MM E R'S HANDBOOK

« CMD_UPDATE tels the sysem to write dl device interna buffers out to the
physica device unit. The information in these buffers usudly originates in the task-
defined buffers; the device interna buffers represent a holding location for the task
information. The device performs this operation automaticaly as part of its normal
operations;, however, this command can aso be used to cause an explicit update
under the control of a programmer task. It is useful for devices that maintain inter-
na data buffers (caches) such as the floppy-disk and hard-disk drives.

« CMD_WRITE téls the system to write a number of data bytes from a task-
defined buffer into one or more of the device internal buffers and then perhaps
onto external hardware (for example, a disk). The number of bytes is usualy speci-
fied by the IOStdReq structure io_Length parameter; the system places the num-
ber of bytes actudly written into the 10StdReq structure io Actual parameter.
Once again, the details of this command vary from device to device.

Of the 12 Amiga devices, four are disk-resdent (the Narrator, Paralel, Printer, and
Seria devices), and eight are ROM-resident. In addition to the standard device commands
shown in Table 1.1, most devices are programmed with a number of device-specific com-
ands.

' Device Functions

. The Amiga provides eight standard Exec functions for use with each device. Some devices
use severd other Exec functions.

All of the devices have an explicit OpenDevice function cal. In addition, the Key-
board device is dways opened automatically by the Input device, which, in turn, may be
opened automatically by the Console device, which is opened automaticaly by the system
upon meachine startup or reset. Note that the Console device can only be opened if
AmigaDOS is active. :

The system automaticaly creates a ROM-based input task when it is started. This
task is used by both the Console device and Intuition. Intuition traps some of the input
events, including mouse movements and keyboard events, needed for window input
processing.

All of the devices have an explicit CloseDevice function cal. However, the Console
device is dosed by the system upon reset or power down; it dso takes the other devices
down with it. Automatic closing is necessary to recover system resources—in particular,
memory.

Once you understand the relationships between the standard functions and the
device-specific functions, you can use them to program the Amiga devices. More particu-
lars about each device function are presented in Chapters 3-14.

Structure Linkages for Tasks and Devices

Figure 19 depicts the structure linkages for al structures that are directly related to task-
device unit management in the Amiga system. Some devices ds0 have device-specific
structures that are used to manage that device.

& P ihr ARA YT s - T

N e WA Sl

Figure
Stri
Linkag
General
Devic
Proce




K
%
i
B
H
H
i
i
]

i
i

Kb e b 1l pti

A,

Pyt i fma 1

DEVICE

_
VOe 17

Figure 1.9:
Structure
Linkages for
General Task-
Device 1/0
Processing

Dato

" io_Data
conning back —&——
from device

IOStdReq Structure
IORequest Structure|

IORequest Structure

io Device

Message Structure
(io_Message)

io_Wnit

- Unit Structure

". unit_MsgPort

MsgPort Structure

Node Structure
(mp_Node)

List Structure
(mp_MsglList)

mn—ReplyPort
|

Message Structure

Node Structure
(mn_Node)

e ——r—
~-\ Device Structure

mp_SiaTask
A

Ity
-\ __Task_Structure

T

1
Message Data Appended to
Message Structure (optional)

The 10StdReq structure contains the |ORequest structure as a substructure. If the
task needs a task-defined data buffer, it must use the 10StdReq structure, which includes
the io_Data buffer pointer. For a read operation, the io_Data parameter specifies the task
RAM buffer in which the device interna routines will place their data. For a write opera-
tion, this parameter defines the task buffer RAM location in which the task should place

the data it will send to the device.

The |ORequest structure contains the io_Device pointer, which points to a Device
structure. A Device structure is identical to a Library structure and is used to help man-
age the operation of al open device units. This parameter is specified by the system when

the OpenDevice function cdl returns.

The IORequest structure dso contains the io_Unit pointer, which pomt;*©" the—Unit A

structure used to manege the operation of one device unit. Just like the‘10£3:5'j"d"£ar§‘_'r\1jé{ér, "~Ai.‘;;f.f‘:‘_,
the io_Unit parameter is oecified by the system when the OperJDevic"gh\ction caUsMurnsM /- 1*-'—,;,‘;

N
w  KiZhon-

e Ml
wid LLC A ."""l-.--‘\.-:’\

R

4 by = . e -t 1 b




AMIGA PROGRAMMER"'S HANDBOOK

In addition, the IORequest structure contains a Message substructure named io_Mes-
sage, which is used to define the parameters of the I/O request message. It contains a
pointer (mn_ReplyPort) to the task reply (message) port that will receive the 1/O request
when the device unit sends it back to a task.

It is important to note thet there are two MsgPort structures in the I/O system. The
firdt is used for the device 1/0 request queue, and the second is used for the task reply-port
queue. Each MsgPort structure contains a Node substructure (mp_Node) and a List sub-
structure (mp_MsgList). They manage the message ligt for the two 1/0 request queues.

The MsgPort structure contains a pointer to a Task structure. For the task-related
MsgPort structure, this indicates which task will be sgnded when the device internal rou-
tines reply one of the I/O requests in the device-unit request queue; they will use the
ReplyMsg function to reply and to signa the task of its completion.

The Message structure contains a Node substructure named mn_Node. It is used to
place 1/0 requests on the message list of the device unit's message-port queue or the task
reply-port queue. '

Any Exec Message structure can aways be extended by the addition of optional mes-
sage data; this data can supplement the normal task-defined buffer data that passes back
and forth between the task and the device. You can see that the IORequest and 10StdReq
structures (or any device-specific 1/0 request structures) are nothing more than customized
Message structures with appended data

General /O Structures in the Amiga System

Dedling with devices in the Amiga sysem requires the programmer to work with the system's
five key structures. |IORequest, 10StdReq, MsgPort, Message, and Unit. Each structure hes a
number of parameters that control the processng of device 1/0 requests. The required opera
tions include initidizing parameters, reading parameters, and writing parameters.

A programmer-defined task must work together with the sysem routines and the device
internal routines to supply and gather the information going to and coming back from devices
For these reasons, the mogt important festures of these structures are now presented.

Refer to Volume | and the appropriate chapters in this volume for more details about
these structures and their parameters. :

The IORequest Structure
The IOReguest structure is defined as follows:

struct IORequest {
struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;

b

o BAHEE o et A O T - Y Y




L teemmbren b

T

R A TR B T N RS A ke L STy (e

M- L a e

DBMICE |/0

iy Ry e .

These are the parameters in the IORequest structure:

* i0_Message. This parameter is a Message substructure containing message informa
tion associated with the IORequest structure. The Message structure is used by the
device to return your 1/0 request upon completion. It is dso used by devices inter-
ndly for 1/O request queuing in each unit of the device. The Message structure (in
particular, the mn_ReplyPort parameter) must be properly initilized for 1/O to
work correctly.

* io_Device. This parameter is a pointer to a Device structure for the device associ-
ated with this IORequest structure. It is automaticaly set by the Exec system rou-
tines when the device is opened with the OpenDevice function. Remember that a
Device structure is formally identical to a Library structure, discussed in detail in
Volume |. Of particular importance here, however, is the lib_OpenCnt parameter,
which the sysem automatically maintains as the number of tasks that are currently
using the Device structure. This is a device-private parameter; once set by Open-
Device, it should not be changed by the cdling task.

e i0_Unit. This parameter is a pointer to a Unit structure that represents a particu-
lar device unit. It is automaticaly set by the Exec system routines when the device
is opened with the OpenDevice function. Of particular importance is the unit_
OpenCnt parameter, which the syssem automaticaly maintains as the number of
tasks that are currently using this Unit structure. This is a device-private parame-
ter; once st by OpenDevice, it should not be changed by the caling task.

e io_Command. This parameter contains the device command to execute. It may be
either a standard device command or a device-specific command.

* io_Flags. This is a st of flag parameters for the |ORequest structure. The flag
parameters are divided into two fidds of four bits each. The lower four bits (bits 0
to 3) are used by the Exec system routines; the upper four bits (bits 4 to 7) are
avalable to each device for its own uses. See bedow for the definition of io_Flags
bit 0.

e io_Error. This parameter is an error number returned to the caling task upon /O
request completion or falure. 1/O errors fdl into two categories. standard device
errors and device-specific errors.

The io_Flags flag parameters in the IORequest and 10StdReq structures are as follows:

e |OF_QUICK. S this if you want to use QuicklO. Then the device will process
the 1/O request immediately if possible. If the device cannot handle the request as
a QuicklO request, it will be queued just as if it had been sent as a queued 1/O
request. This is io_Flags parameter bit 0. See the specific chapters for other
device-specific values of io_Flags.

19

——

s AT

e




4 A sl -

¢ e i s e AL S e

R S S

R T CRAICE PO SR S PR PR TN

20 WAMIGA PROGRAMMER"'S HANDBOOK

The 10StdReq Structure

The 10StdReg structure is defined as follows

struct 10StdReq {
struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
ULONG io_Actual;
ULONG io_Length;
APTR io_Data;
ULONG io_Offset;
ULONG io_Reservedi;
ULONG io_Reserved2;

b

The first six parameters in the 10StdReq structure—io_Message, io_Device, io_Unit,
io_Command, io_Flags, and io_Error—are the same as for the |ORequest structure. The
other parameters are as follows:

e i0o_Actual. This parameter usualy represents the actual number of bytes transferred
during the requested 1/0O operation. It is only valid upon 1/0O completion. Not al
devices return this value.

io_Length. This parameter usually contains the requested number of bytes to trans-
fer; each task must set it prior to sending the 1/0 request. A vdue of - 1 can be
used to indicate variable-length data transfers terminated by some EOF (end of file)

condition. EOF characters, where appropriate, are defined separately for each
device. Not dl devices require this vaue.

io_Data. This parameter is a pointer to the task-defined data buffer for task-device
data transfers. This is the data buffer over which your task has complete control.

io Offset. This parameter is a byteoffsst gpecification for byte-offset-structured
devices, such as the floppy disk controlled by the TrackDisk device. This number

must be a multiple of the device block sze (for example, 512 bytes for a floppy-
disk device).

io_Reservedl and io_Reserved2. These parameters each contain four bytes reserved
for future structure expansion.

i

IRRPTYNPRVOIE BT WE LY WY




e am e e

MDA -

R L

DEVCE 1/0

The Unit Structure

The Unit structure is defined as follows:

struct Unit {
struct MsgPort *unit_MsgPort;
UBYTE unit_Flags;
UBYTE unit_Pad;
UWORD unit_OpenCnt;
|H

These are the parameters in the Unit structure:

» unit_MsgPort. This parameter is a pointer to a MsgPort structure that is used to
queue al 1/O reguests coming from dl tasks into this device unit. The messge
port will be shared by more than one task if those tasks open the unit in shared
access mode. '

e unit_Flags. This parameter contains a set of flag parameters for the device unit.
See below for the definition of the unit_Flags parameter.

e unit_Pad. This parameter is a one-byte padding that is used to word-dign the
parameters in the Unit structure.

e unit_OpenCnt. This parameter contains a count of the number of tasks that
opened a unit of the device. It is incremented or decremented each time a task
opens or closes the unit. The parameter alows the same device unit to be shared
by a number of tasks. ' '

The unit_Flags flag parameters in the Unit structure have the following meanings:

« UNITF_ACTIVE. The device unit associated with this Unit structure is currently
active accessng its internal routines to process an 1/O request.

¢ UNITF_INTASK. The device unit associated with this Unit structure is currently
asociated with a particular task. Therefore, if the unit is opened in exclusve access
mode, another task will not be able to open it until the other task closes it.

Both of these flag parameter bits are controlled by the system.

The MsgPort Structure
The MsgPort structure is defined as follows

struct MsgPort {
struct Node mp_Node;
UBYTE mp_Flags;
UBYTE mp_SigBit;
struct Task *mp_SigTask;
struct List mp_MsgList;

21




k 22§ AMIGA PROGRAMMER"'S HANDBOOK

These are the parameters in the MsgPort structure:

it e s

e mp_Node. This parameter is a Node substructure that is used to place this mes-
sage port on the message-port list of dl MsgPort structures in the sysiem. The sys
tem automatically maintains a list of message ports. The Node structure contains
the In_Name parameter, which can be st with a smple structure-parameter assign-
ment statement. Once the In_Name parameter is defined, this MsgPort structure
can be referenced by name by a series of cooperating tasks, each of which can then
add or remove 1/O requests from that message port.

e mp_Flags. This parameter contains a st of flag parameters for the MsgPort struc-
ture. :

e b e R TR il

* mp_SigBit. This parameter is the sgnd bit number used to signa a task when a

message arrives in the message port. Each message port can have only one signd
bit number.

* mp_SigTask. This parameter is a pointer to a Tak structure that represents the
task to be signded when a message (I/O request) arrives in the message port. This
is usudly the task that "owns" the message port.

e et et R e

e mp_MsgList. This parameter is a List substructure that maintains a lig of dl mes-

sages arriving in the message port represented by this MsgPort structure. The Mes-
‘l . _ sage structure Node substructure is used to place nodes on this list.

i The Message Structure
' The Message structure is defined as follows

struct Message {
struct Node mn_Node;

struct MsgPort *mn_ReplyPort;
UWORD mn_Length;

IH

i These are the parameters in the Message structure:

:  mn_Node. This parameter is a Node substructure that alows al messages arriving
: a a message port to be placed in a message list.

* mn_ReplyPort. This parameter is a pointer to a MsgPort structure that represents
the message port to which the message should be sent once the receiving task has
accessed or used its data. For task-device interaction, each task must aways initia-
ize this parameter before dispatching a command.

e mn_Length. This parameter contains the number of data bytes in the message. It

is usually not used for task-device 1/0. The message data itself is dways appended
to the Message structure.




ST R AR E PR VPR

DEVCE 1/0@23

Device-ReIated Structures and INCLUDE Files

Table 12 presents a summary of the devicerdated structures and the INCLUDE files
defining these structures.

Not dl of the Amiga devices have a device-gpecific 1/0 request-type structure explic-
itly assigned to them. In particular, four of the Amiga devices—the Console, Gameport,
Input, and Keyboard devices—show no such structure in their INCLUDE files. This does
not mean that you cannot send commands directly to them; instead, the command-sending
mechanism relies on the 10StdReq structure itsdlf.

The other eight Amiga devices have one or more I/O request structures assigned to
them. The Printer device has two 1/0O request structures assigned to it. IOPrtCmdReq is
used for sending most 1/O requests to the Printer device; IODRPReq is used for sending
dump-raster bitmap-to-printer 1/0 requests.

The Audio and Timer devices both use the IORequest structure as a substructure in
their 1/0O request structures to send commands and data to their respective device rou-
tines. On the other hand, the Clipboard, Narrator, Paralel, Serial, Printer, and TrackDisk
devices use the 10StdReq structure.

In addition to the 1/O request structure, most devices use other structures to help
manage the device. The Audio, Paralel, Serid, Timer, and TrackDisk devices have one
additional structure each. The Clipboard device has two, the Keyboard device has three,
and the Printer device has four additional structures.

Nine devices have one INCLUDE file each that defines their structures and other
data required for a task to interface with the device internal routines. However, the Con-
sole, Input, Keyboard, and Printer devices have two INCLUDE files each.

If you study the data in Table 12, you will know the names of al device-reated
structures and where to find structure definitions and other data needed to dedl with each

- Amiga device.




e e LT

R IR LLE AL L SR

-
88 &
[ and
18
- R 2o )
Y <
§38w
Device Name of Request| Name of 1/0 First Auxiliary Second Auxiliary{ Third Auxiliary Fourth Auxiliary | INCLUDE Files
Structure Request Structure Structure Structure Structure
Substructure
Audio IOAudio |ORequest AudChannel - - — Audio, h
Clipboard 10ClipReq 10StdReq Clipboard_ SatisfyMsg - - Clipboard.h
UnitPartial
Console |OStdReq — ConUnit - - - Console.h
Consoleunit.h
Gameport 10StdReq - _ - - - Gameport.h
Input 10StdReq - InputEvent - - - Input, h
Inputevent.h
Keyboard 10StdReq _ KeyMapNode KeyMap KeyMap- - Keyboard.h
Resource Keymap.h
Narrator Narrator_rb 10StdReq - - - — Narrator.h
Mouth_rb
Perallel | OExtPar 10StdReq |OPArray — — - Parallel.h
Printer 10PrtCmdReq |0StdReqg PrinterData PrinterSegment PrinterEx- DeviceData Prtbase.h
IODRPReq tendedData Printer.h
Serid | OExtSer 10StdReq IOTArray - - — Serial.h
Timer TimerRequest |0ORequest Timeva — — _ Timer, h
TrackDisk |OEXtTD 10StdReq TDV__Public- - - - Trackdisk.h
Unit
]




Device Management



et A 1 e A Den e b

£
+

DEVICE  MANAGENENIT Iy17

| Introduction

This chapter discusses generd topics of vital importance to Amiga device management and
programming. Programming procedures for Amiga devices differ from input/output proce-
dures for most other computers. These Amiga procedures were designed so that a pro-
grammer could take maximum advantage of the built-in Amiga device interna routines.

The chapter first presents the C language programming procedures you will use for
Amiga device management. The most common types of device management tasks, the
usua sequences of their execution, and the most important steps in their programming
procedures are identified. Following sections focus on the AbortlO, BeginlO, RemDevice,
and AddDevice functions, since their uses are similar for dl 12 Amiga devices. Altogether,
these topics establish a programming framework upon which you can build Amiga device
management tasks and programs.

The chapter concludes with discussions of the nine Exec-support library functions.
All of these functions are contained on disk in the file named amigalib on the C language
programming disk in the LIB: directory. Each function is a st of prepackaged program
statements that is usualy repeated again and again in device management programs. These
functions were put together in a library for easy programmer access; they alow your pro-
grams to be much shorter than they would be if you programmed using the Exec task and
message-port management functions. These functions further streamline your use of the
preprogrammed device management features, thus saving programming effort. (The appen-
dix presents a precise definition of each of the Exec-support library functions.)

Genera! Programming Procedures

Figure 2.1 depicts the generd sequence of programming steps you should follow when
programming Amiga devices. This sequence consists of opening the device unit with
OpenDevice; sending commands to the device unit with BeginlO, DolO, or SendlO; and
closing the device unit with CloseDevice. The following discusson is presented in terms
of a single tak, device unit, tak reply port, and /O request structure. The same pro-
gramming pattern holds for multiple instances of these, as you will see later on.

The programming steps are as follows

1. Create a task that will handle the device management. You can do this with the
CreateTask function. Note that CreateTask is cdled in another task, not in the task
that will manage the device. (All the devices that the system deals with are man-
aged by a st of device management tasks created by other tasks in the system; the
origina boot tak is the master task in the system.) Once the device management
task is created, you can name it (specify a Task structure Node substructure
In_Name parameter) and add it to the system task list using the Exec library Add-
Tesk function. All other tasks and programs in the system can then obtain a pointer
to its Task structure using the Exec library FindTask function.

\ .y - [P




M L s e o Sl el i e e Lk, D e

e T gl A n L M RN Y e

el

AMIGA PROGRAMMER"S HANDBOOK

Figure 2.1:
Programming
Steps for Task-
Device I/0
Processing

2. Create a task reply port using the CreatePort function. This is the task message
port where 1/O request messages will be queued when the device finishes process-
ing each 1/0 request. This function cdl is made within the device management
task itsdf. {Note that the device unit aso has a message port for 1/0O requests that
are sent to it. This port is controlled by the Unit structure MsgPort substructure
crested by the OpenDevice function cdl; a task is not required to creste it with a
CreatePort function cal inside that device management task.) A task should create a
message port for each distinct category of I/O requests, which usualy means a sep-
arate port for each device and device unit.

Create task 'using CreateTask

i
Create task's reply port using CreatePort

Create standard 1/0 request using CreoteStdlO
or
Create extended 1/0O request using CreateExtlO

Set SHARED flag in I0StdReq (IOExtReq) using
structure parameter assignment statements

I

Call OpenDevice for this IOStdReq or
IOExtReq structure; OpenDevice fills in other
parameters in |OStdReq (IOExtReq)

i
Use a series of BeginlO, DolO, and

SendlO function calls to send a series of
commands to device

i
Call CloseDevice

after this task
is finished with device

-2

Delete standard (extended) 1/O request using
DeleteStdIO (DeleteExtlO)

Delete task's reply port using DeletePort

I

Delete Task using DeleteTosk

e e AL G

4

CERW s DR T T

R

i




‘DEVICE MANAGHWENTB2 9

3. Create an |/O request structure for the device unit using the CreateStdlO or
CreateExtlO function. Use CreateStdiO only if the device requires an 10StdReq
structure to define its commands. If the device requires a device-specific 1/O
request structure, cal CreateExtlO to alocate and initidize that structure. A task
will usualy dso have to specify additiond structure parameters to fully initiaize
the device-specific 1/0O reguest structure. (See the appropriate chapter to determine
what kind of 1/O request-structure parameters a device requires.) The 1/O request
structure is now in the task's memory space, is not queued, and is said to belong to
the task.

4. Set the appropriate flag parameter bits in the IORequest, |0StdReq, or device-
specific 1/0 request structure before calling OpenDevice. In particular, decide
whether you want to open the device in shared or exclusve access mode. You aso
may want to set other device-pecific 1/0 request parameters; read the appropriate
chapters in this volume to determine what those parameters are.

5. Cal the OpenDevice function to open the device unit. OpenDevice will automati-
cally increment the Device structure lib_OpenCnt parameter, indicating that one
more task has the device open. It will aso automaticaly increment the Unit struc-
ture unit_OpenCnt parameter, indicating that one more task is using the unit.
OpenDevice will fill in additional parameters in the 1/O request structure; it will
st the 1/0 request structure io_Device and io_Unit parameters to point to appro-
priate Device and Unit structures. -

© AT VLT R e i - LR TR

6. Use a sries of BeginlO, DolO, and SendlO function cdls to send a series of com-
mands to the device unit. First map out the task's data needs and decide the order in
which the task needs the data. Then decide if the task must have the daa before pro- a¥ |
ceading (synchronous) or can request data and go on to other things (asynchronous). _ i1
Then send the commands. '

7. Close the device unit when you are sure that this task will no longer need it. Gener- - _ ; i

aly spesking, cdl CloseDevice using the same 1/O request structure you used when

. you caled OpenDevice. This step will decrement the Device structure lib_OpenCnt i
1 parameter, indicating that one less task has the device unit open; it will dso decre . HRE
{ ment the Unit structure unit_OpenCnt parameter, indicating that one less task is EIRE
using the device unit. 118

P 8. Deete the I/O request structure using the DeleteStdlO or DeleteExtIO function. 118

" Use DeeteStdIO if you originally used CreateStdIO; use DeleteExtlO if you used 1R
CreateExtlO. These function cals free the memory occupied by the 1/O request '
structures.

9. Delete the task reply-port MsgPort structure using the DeletePort function. This
1 frees the memory occupied by the task message-port management structures. How-
4 ever, if you want to use the task message port for other messages in the system,
! don't delete it at this time.
H




j
i

i b - e i S e

s

30

AMIGA PRO GRAMMER"S HANDBOOK

10. Arrange to return to the task that originally created the device management task,
and cdl the DdeteTask function to delete the Task structure used to manage the
device management task. (This is an optional step.)

Asynchronous 1/0 Request Processing

Figure 2.2:
Progress of an
Asynchronous

I/O Request

[Y

Figure 2.2 shows how the sysem behaves while processing asynchronous 1/O requests.
Yau use asynchronous /O requests when you want to send multiple 1/0 requests one
after the other and you do not need the data before you can continue with your task.
Recdll that five functions—three Exec library and two device library functions—control the
detailed operation of asynchronous /O request processing: BeginlO, SendlO, AbortlO,
ChecklO, and WaitiO. In addition, the Exec library GetMsg and Remove functions aso
play a part in the sequence of actions for asynchronous 1/0 request processing.

Six rectangles in the figure represent a sequence of actions that are in part directly
under programmer-task control, but for the most part are determined and controlled by
the coordinated action of the sysem and device internal routines. For this illustration,
QuicklO was not requested.

Task Statements Executing
AbortfO (optional)
ChecklO (optional) GetMsg
WaitiO (optional)
Remove ¢=—
Return to )
tosk (except BeginlO or SendlO
for WaitiO) l

f/O request is queued

/O request list

i

Device replies to task. Request is added at
bottom of task reply port list. Task is
signaled of I/o completion.

i

Replied request works its way to top of

task reply port list

-—Task removes

in device 1/O request list first (top)
- request in
] task reply
I/O request works its way to top of device port list

F=——1—Task removes

request before

Device removes /O request from device it reaches
I/O request list and processes request top of task
reply port
° list

AR ol TN AT L I W

Caar e

BEST AT o




PR [

e et Ve SR

e e e

[ -

g e

DEVICE MANAGEMENT

e BT B Y T TR

The action proceeds as follows:

1. The task has sent an asynchronous 1/0 request using either the BeginlO or SendlO

function. (Figure 2.1 showed the sequence of steps that led up to this point in the
task; note that a particular device unit was previoudy opened with OpenDevice.)

. The /O request is placed in the device-unit request queue using the Device, Unit,

MsgPort, and Message structures associated with the queue's message port and the
1/0 request. The device-unit request queue is a first-in, first-out (FIFO) queue, so
this particular 1/0 request was placed at the bottom of the queue. The I/O request
structure is now on the device-unit request queue and is sad to belong to the
device interna routines. If the task does not execute a WaitlO function cdl for
the 1/0O request, it can continue executing other task statements. If the task does
execute WaitlO at any time after it executes BeginlO or SendlO, and the device
has not processed and sent the I/O request back to the task reply-port queue, that
task will block further execution and lose the CPU until a task signd indicates the
device has returned the 1/0 request. The mechanism to detect and handle the task
reply-port sgnad must be established before the 1/0 request is sent.

. The queued 1/0 request has now worked its way to the top of the queue and can

be processed by the device internal routines. Just how long the 1/0 request takes to
get from the bottom of the list to the top depends on the current length of the list
and on dl other activities in the system. How busy the system is determines how
much time the CPU can give to the device interna routines of this particular
device and how fag it can remove 1/O requests from its device request queue.

. The device interna routines remove the pending 1/0 request from the top of the

device-unit request queue. The device uses the GetMsg function internaly to get
the 1/0O request. It then uses the parameters in the 1/O request structure to deter-
mine what the requesting task wants back from the device.

. The device replies to the task and adds the reply to the bottom of the task reply-

port queue. The I/O request structure is now in the task reply-port queue and is
said to belong to the task. If an error occurred during processing, the replied 1/0
request structure will contain information about the error in the io_Error parame-
ter. The 1/O request structure Message substructure mn_ReplyPort parameter tells
the system where to put the reply; the device uses the ReplyMsg function inter-
naly to send the reply to the task reply port. In addition, if a signaling mechanism
has been secified between the task reply port and the task that owns it, the task
will be signaled of the arrival of the reply.

. The task, once signaled, can remove the 1/O request from the task reply-port queue

immediately using the Remove function, as depicted in the figure by the line from
the fifth smadl rectangle to the firg one. Remove is usualy used only in conjunc-
tion with the ChecklO function, which checks for the presence of a specific reply
in the queue. ChecklO returns a pointer to the queued I/O request structure, and
the task can then call the Remove function to remove it. Note that this can also be

o s reCtmd i e e bt e

e SR




32 QAMIGA PROGRAMMER"S HANDBOOK

done while the replied 1/O request is working its way to the top of the task reply-
port queue.

7. If the reply message is not removed from the task reply-port queue using the
Remove function, the task will continue processng queued replies on a first-in,
first-out basis when it becomes active. The replied 1/0 request originaly sent by
BeginlO or SendlO will work its way to the top of the queue, and the task can
remove it. To do so, the task must explicitly cadl the GetMsg function, shown in
the figure by the line from the sixth amal rectangle to the first.

This completes the travels of the asynchronous 1/0 request through the system, from
the sending task back to the sending task. First sent to a gpedific device unit by the BeginlO
or SendlO function, the request proceeds through the various queues and findly returns to
the originating task, where it can be accessed, the returned data processed, and the I/O
request reused if necessary.

Remember that the system is generally switching between this task, other
programmer-defined tasks, and system-defined tasks. Also, when a device is active, the
CPU will spend its time executing the device internd routines. All of these actions take
place under the control and supervision of the Exec routines and the combined system
and device interna routines. The queues help arbitrate the sequence of events.

Synchronous 1/0 Request Processing

Figure 2.3 shows how the system behaves while processing synchronous 1/0O requests. You
usudly use synchronous /O requests when you want to send one request at a time and
wait on the device to send the data back to your task. Note that the Exec GetMsg func-
tion does not play a part in removing replied synchronous I/O requests from the task
reply-port queue. Again, QuicklO was not requested in this example.

. There are a fev important differences between synchronous and asynchronous pro-
cessing, as a comparison of the two figures shows. These are the points to remember
about synchronous 1/0:

» The ChecklO, SendlO, and WaitlO functions are not used. Just like GetMsg, these
three functions are only used for asynchronous 1/O requests.

* Once the BeginlO or DolO function executes, the requesting task will be blocked
until the 1/0 request is completed and the requesting task is natified of its arrival
in the task reply-port queue. The task will stop execution until the device returns
the reply and the task accesses the returned data. In the meantime, while the
requesting task is blocked, other tasks may take over the CPU. This is the princi-
pa reason why synchronous /O requests are used.

e BeginlO or DolO automaticaly cadl Remove to remove the I/O request from the
bottom of the task reply-port queue as soon as the task is signaled.

Always remember that no I/O request structure in the system is ever copied as it
moves from queue to queue during 1/O request processing. Instead, only one copy of
these structures is present in RAM for each 1/0 request sent to a device unit. The system
manages an 1/O request structure by placing it on a set of queues in a well-controlled

Figure
Progross
Symchrt
IO Re




it e

DEVICE MANAGEMENT

Figure 2.3:
Progress of a
Synchronous

I/0O Request

*

Task Statements Executing
AbortlO (optional)

Remove |7
BeginlO or DoiO

1

I/O request is queued
in device 1/0 request list

i
/0 request works its way to top of device
/0 request list

BeginlO or DolO
1 automatically calls

Device removes I/O request from device Remove to remove request

I/O request list and processes request from bottom of task reply
port list as soon as

1 task is signaled

Device replies to task Request is added at
bottom of task reply port list. Task is —
signaled of I/O completion. -

sequence. In this way RAM requirements are minimized and each 1/0 request structure is
reusable once it completes a round trip.

Multiple Tasks, Reply Ports, and Device Interaction

Figure 2.4 shows three tasks, each containing some of the Exec-support library function cdls
as part of its task statements. The figure does not depict the exact order of function call
execution; rather, it depicts the genera packaging of Exec-support library functions to work
with Amiga devices.

Task2 was created by a CreateTask cal in Taskl. Task3, in turn, was created by a
CreateTask cdl in Task2. Thus, Task3 aso was created indirectly by Taskl.

As an example of how this works, think of Device 1 as the Serid device connected to
a modem. Device2 is the Audio device connected to a st of speakers, and Device3 is the
Printer device connected to a printer through the Amiga paralld port. Under this arrange-
ment, you would want a Serial device management task, an Audio device management
task, and a Printer device management task. Creating three distinct tasks in this way
would help you keep things straight in your program.

Depending on your particular program design, the situation could be even more compli-
cated: Taskl needs data from Device 1 in two different categories, Task2 needs data from
Device2 in two different categories, and Task3 needs data from Device3 in two different cate-
gories. In order to make data management essier in this Stuation, it is necessary to create two
’[ypes of 1/0 request structures and two types of I/O request reply ports for esch task.

33

[T

R

PR




P

34MAMIGA PROGRAMMER'S HANDBOOK

Figure 2.4: [ Repispere 1] | ngort F | Rnpu,t!'on 1] [ sepml;t F3 I | Rep-lyl"ort t] | Rlpl)lloft 7}
Using the Exec- 1 | I I
Support Library Devicel Device2 Device3

Functions for (Unito) (Unilo) (Unito)

Tasks and !
Reply Ports [Devicel fl-O_PLrtl [Device; 110 Porll |bevice3 1/0 Port|

“

Taskl

CreotePort (for Re:plyPortl)
CreotePort (for ReplyPorl2)

CreoteStdlO (for first /O request)

CreoteStdIO (for tast /O request)

CreoteTosk (for Tosk2)
Oe'eteTask (lor Task2)

DaleteStdIO (for first /O request)

OeletestdlO (for lost |/O request)

DeletePort (for ReplyPort!)
OeletePort (for ReplyPort2)

Task2

CreotePort (for ReptyPorti)
CreotePort (for Repl>Port2)

Creat#StdIO (for first 1/0O request)

CresateStdlO (for lost WO request)

CreoteTosk (f ¢ TaskJ)
Deleteiosk (fo! Task3)

OeletastdiO (for firsst /O requast)

DcletssStdiO (for last ¥O requetst}

DeletePort (for ReplyPord)
DetetePort (for ReplyPort2)

Tosk3

CreotePort (for ReplyPolO
CreotePort (for ReplyPor|2)

CreatesSIdiO (for first 1/0 request)

CreoteStdiO (for lost 1/O request)

ToskJ could create
one o move losks
using CreateTosk

DeletestdlO (for first 1/O request)

DeleteStdIO (for last iC> request)

DdetePort (for ReplyPortl)
OeletePort (lor ReplyPort®})

BeginfO/DolO/SendIO r BegJnlO/DolO/SendlO

BegjnlO/DolO/SendIO

Taskl contains two CreatePort statements to create two task reply ports for 1/O
requests coming back from Devicel. In addition, Taskl contains a number of CreateStdlO
function cdls to creste |IOStdReq structures that send commands to Devicel, one Create-
StdlO function cdl to create an 10StdReq structure to use when caling OpenDevice, one
CreateStdIO function cdl for each command to be passed, and a corresponding number of
task-cleanup DeleteStdIO function cals to delete the IOStdReq structures. Findly, Taskl
contains a CreaeTask function cadl to creste Task2 and a task-cleanup DeleteTask function
cdl to delete Task2. The same pattern of function-cal packaging holds for Task2 and Task3.

Immediate-Mode Request Processing

This section discusses the concept of immediate-mode request processing. Because
immediate-mode commands operate in a unique way, they play an important role in
Amiga device management.

CMD_CLEAR, CMD_FLUSH, CMD_START, CMD_STOE and CMD_RESET .
can be dispatched as immediate-mode commands. Moreover, these commands are not always
dispatched as immediate-mode commands; they often operate in other modes, depending on
the predefined characterigtics of the device internal routines.

Condder the various ways that a device command can progress through the Amiga
device software system. Teking into account that both the device request queue and the
task reply-port queue are possble holding locations for 1/O requests, there are four possble




[

DEVICE MANAGEMENT

paths an 1/O request can follow:

1. A command can be dispatched to a specific device unit and queued in its 1/O
request queue; the device can then process the command and reply it to the tesk
reply-port queue. This path involves queuing on both ends of the transaction.

2. A command can be sent to a device unit with the I/O request structure io_Flags
IOF_QUICK bit set. QuicklO will be succesful if the current sysem conditions
dlow it. The device internal routines wili process the command immediately and
send it back to the task without queuing on either end of the transaction. The
IOF_QUICK bit will dtill be set in the replied 1/O request.

3. A command with IOF_QUICK st can be sent to a device unit, but the device
internal routines may not be able to process the command as a QuicklO command.
They will then automatically queue the command /O request in the device-unit
request queue. It will be processed when it reaches the top of the queue and will
be subsequently replied to the task reply-port queue by the device interna routines.
This arrangement aso involves queuing on both ends of the transaction. The 10F-
_QUICK bit will be reset in the replied 1/0 request.

4. A command can be sent to the device unit in immediate mode. The device internal
routines dways process it immediately, no matter what else is going on in the sys
tem a that time. These commands have high priority; they may or may not be
replied to the task reply-port queue, depending on the IOF_QUICK bit setting.

As an example, assume that a task has sent an immediate-mode CMD_RESET com-
mand to reset a device's internal routines to their default startup state. The task is asking
that the device interna routines be reset immediately, regardless of what circumstances
currently exig in the system. It is easy to see that such a command should not be queued
in the device request queue.

Moreover, the task usualy wants the device internal routines to execute the command
immediately, even if it involves interrupting a currently executing nonimmediate command.
This is best illustrated by the example of a CMD_STOP command interrupting a
CMD_READ or CMD_WRITE command. In many cases, the CMD_READ or
CMD_WRITE command will be interrupted in the middle of its progress, thereby leaving
some bytes not yet transferred. The device interna routines will not dlow the data transfer
to complete before CMD_STOP stops the device from sending data back and forth between
the device and task-defined buffers.

The precise operationa details of the immediate-mode commands vary from device to
device. They can sometimes be dispatched as QuicklO and can sometimes be replied to
the task reply-port queue. The appropriate command discussions in the following chapters
detail the specific behavior of individua commands.

General I/0 Request-Structure Procedures

This section discusses procedures for initializing and dealing with 1/0 request structures.

* You can apply these procedures to programming any of the 12 Amiga devices.

35




36

AMIGA PROGRAMMER"'S HANDBOOK

Because the IORequest structure is the minimum structure required to dispatch 1/0
requests to device units, specialized device-specific 1/O reguest structures aways include it
as the first substructure entry. Therefore, any parameters in the |ORequest structure are
adso in devicegpecific structures.

The IORequest structure consists of a Message substructure containing an
mn_ReplyPort parameter; the io_Device and io_Unit pointer parameters, and the
io_Command, io_Flags, and io_Error parameters. Here are the procedures for initializing
these parameters regardless of the device you are programming:

¢ mn_ReplyPort. This parameter must usually be initidized to point to the MsgPort
structure representing the task reply port of the task sending the I/O request.
When a device has finished processng a command, its internal routines will send
the reply to this port. Those routines will place a pointer to the I/O request struc-
ture on a list that represents al queued 1/0 request structures that have come back
from the device unit. Note that the reply mechanism is handled automaticaly by
the device internal routines. The mn_ReplyPort parameter can adso point to any
MsgPort structure belonging to any task in the system.

Specifying mn_ReplyPort to point to a MsgPort structure owned by a task other
than the one that originated the 1/O request provides a mechanism for the originat-
ing task to send device data to another task. This is another mechanism for indirect
data transfer between tasks using the device interna routines to generate that data.
If you think of the device internal routines as a third task in this process, you have
one task sending data to another task using a third task to generate that data

If you specify a null value for mn_ReplyPort, the device interna routines will
not reply the 1/0 request to any task reply-port queue. In most cases, the originat-
ing task will not be able to get an 1/O request structure pointer and will therefore
not be able to retrieve the device-generated data.

If a task uses the CreateStdlO or CreateExtlO functions, the mn_ReplyPort
argument is the only argument in the CreateStdiO function cdl and the firg of
two arguments in the CreateExtlO function cdl. In addition, CreateStdlO and
CreateExtlO initidize the 1/0 request structure Message substructure In_Type and
In_Pri parameters, therefore, if a task uses these functions to creste its 1/O request
structures, it will not have to initidize these two parameters. -

* io_Device. This is a pointer to a Device structure used to manage the device inter-
nal routines of a specific device. It is initidized by the OpenDevice call for the first
1/0 request structure used by a task to communicate with a specific device unit.
Additional 1/0 request structures that the task needs in order to send commands to
the device can then be initialized by copying this parameter into their io_Device
parameters. The same Device structure is used for dl open units of a specific
device.

e io_Unit. This is a pointer to a Unit structure used to establish a specific - device-
unit 1/0 request-queue message port and to manage a particular device unit. It is
aso initidlized by the OpenDevice cdl for the firg 1/O request structure used by a
task to communicate with a specific device unit. Additiona 1/0 request structures




PR PO WO P

DEVICE MANAGEMENT

that the task needs to send to the device unit can then be initidized by copying
this parameter into their io_Unit parameters.

¢ io_Command. This is a literd congtant representing the name of one of the device
commands. The INCLUDE files assign a specific value to it for every device com-
mand that a particular device honors. You aways initidize this 1/0 request-structure
parameter using a smple C language structure-parameter assgnment statement.

e io_Flags. This represents a sat of flag parameter bits representing the specific
requirements of the 1/0 request a task sends to a device unit. In some cases a task
initializes this parameter before it opens a device unit with OpenDevice. For
example, if a task needs to open a device unit in shared access mode, it should
initidize the io_Flags parameter shared access hit in the first 1/O request structure
before calling OpenDevice. Some devices are opened in exclusive access mode
unless a task ecifies otherwise in the io_Flags parameter. Other flag parameter

" bits should dso be st in other device-specific OpenDevice calls; in the following
chapters, you will discover the flag parameter bits that are provided for each spe-
cific device.

Once you have defined the first 1/0 request structure to open the device, you
may want to set the io_Flags parameter to other values for other 1/0O requests. For
example, if a device supports QuicklO, a task can initidize io_Flags to 10F-
_QUICK for some (or al) commands sent to that device.

e io_Error. The vaue of this parameter is usually set by the device internal routines
before the 1/0 request is replied. '

Classes of /0 Requests
Ail 1/0 requests fdl into two general classes:

1. Those defined by an 10StdReq structure. The. IOStdReq structure consists of an
IORequest substructure with four parameters (io_Actual, io_Length, io_Data, and
io_Offset) appended to it. The io_Data parameter enables a task to point to a
RAM data area (a task-defined buffer) that can be used as a source and a destina
tion for information coming from and going to the device internal routines. (The
I0Request substructure itself has a total of Sx parameters but does not include any
parameters to represent a RAM data-area pointer; by itsdf, it does not alow a task
and device to relate through task-defined buffers)

2. Those defined by a device-pecific extended 1/0O request structure. An example is
the TrackDisk device, which uses the IOExtTD structure to manage data going
back and forth between a task and a specific device unit. All of the device-specific
extended I/O request structures are summarized in Table 13 in Chapter 1.

Creating Multiple I/0 Requests

Each 1/0 reguest sent to a device requires a distinct 1/0 request structure to represent it.
»A specific 1/O request structure must not currently be on any list in the system if you

37




3YLIMUPA PROGRAMMER'S HANDBOOK

r . R —

i want to use it; it cannot be in a device request queue or a task reply-port queue. This
' section presents the rules you should follow when creating multiple 1/0 request structures
to define the data needs of your tasks.

A task can get its required /O request structures in three ways. it can create them
anew with a cdl to OpenDevice; it can reuse dready defined ones by redefining their param-
eters once they have completed a round trip from tesk to device and back to the task; or it
can creste new ones by cloning (copying) some parameters and initidizing others in an
dready existing 1/O request structure. The procedure a task should use depends on the spe-
dfic point in that task, what 1/0 request Structures are aready defined at that point, and
what the task is trying to accomplish.

If an 1/O request structure is created anew by an OpenDevice cal, OpenDevice first
initializes the io_Device and io_Unit parameters to point to a Device and a Unit structure.
OpenDevice defines these two parameters for the first usage of the 1/0 request structure,
which represents the first data request actudly made to the device unit using BeginlO,
DolO, or SendlO. Once these two parameters are initialized, a task can copy them into any
number of other properly dlocated 1/O request structures. Each of these copv operations,
together with other structure-specific parameters, will result in a unique instance of the 1/0
request structure in RAM.

In addition, the specific 1/O request structure initialized by OpenDevice can be used
again and again for BeginlO, DolO, and SendlO function cals, provided it has completed
a round trip (from the initializing task to the device-unit request queue, to the task reply-
port queue, and back to the task). Once back in the task it will not be on any lists in the
system. Only then can the device data represented by the structure be accessed by the task
and the 1/0O request structure be reinitidized and dispatched again. When the task once
again owns that particular 1/0O request structure, its parameters (io_Flags, io_Data,
io_Length, and so on) can be redefined and it be can used to send a new /O request.

e TR AR T A Lt

Ry AR e

e

b e

Processing Multiple 1/0 Requests

Figure 2.5 shows a device management task in action. This figure represents the task-
device interaction of any of the 12 Amiga devices. For example, the large rectangle could
represent the program statements of a disk-data management task handling 1/0O between a
specific TrackDisk device unit and a sat of task-defined buffers. The figure will first be
discussed in terms of asynchronous 1/0 requests.

Each of the small rectangles inside the larger one represents a specific instance of an
1/0 request structure and the task operations required to define it. Each of thes® 1/0
! request structures could be created by the Exec-support library functions Cre-aceStdlO and
i CreateExtlO. Then only the 1/0 request structure Message substructure paraaieters would
4 be initialized; a task would sill have to initidize some parameters (io_Data. io__Length,
io_Actual, io_Offset, and so on). These 1/O request structures could be created the hard
way, using individual Exec library functions and assignment statements, but usins Exec- ﬁ :
support library functions is more efficient. In either case, the I/O request structure is alo- "'
caed in RAM at a location determined by the 1/O request structure allocadon process.
(The figure is not intended to portray the RAM location of these structures. >

. The initidization of IORequestO is completed with a cdl to the OpenDevice function,
which initidizes its io_Device and io_Unit parameters. Other required |ORequescO rxarsmeters

M AT L T AR TR TR
P
[0}
Qo
c
[}




e R

e

i et i T

AT N

I TR R AN

R, o e

e g At

Bar ot b o bt N el AT AT T b W 3wt e

DEVICE MANAGEMENT g3 9

Figure 2.5:
Sending
Multiple 1/O
Requests to a
Device

Device Management Task Statements

1/ORequestO
Created by
OpenDevice
(io_Device and

io..Unit initialized) {
]

copy io_Device

copy io_Device copy io_Device

copy i0JJnit copy ioJJnit copy i0JJntt
i } i
I/ORequestl I/ORequest2 I/ORequest3
define other define other define other
Porometers Parameters Parameters
specific to specific to specific to
this request this request this request

BeginlO/SendiO

BeginlO/SendlO BeginiO/SendIO

]

Task Reply
Port Queue

Task Reply Port Queue

Device Internal Routines
GetMsg

!
IORequestO
IORequestl
|ORequest2
IORequest3

S

can be initidized using smple gtructure-parameter assgnment statements. When dl of these
parameters are initidized, |IORequedtO is dispatched by a BeginlO or SendlO function cal,
denoted by the arrow on the right side of the topmost smdl rectangle.

If the device unit currently has no queued I/O requests, the dispatched request will be
queued at the top of the device-unit request queue. On the other hand, if the device unit
dready has queued /O requests, I0RequestO will be placed beow them. The device inter-
nal routines will process IORequesO when it gets to the top of the queue. However, if the
system is busy with other tasks, devices, or interrupts, |ORequestO may have to wait in the
queue until the system passes control to the device interna routines.

Once the task has dispatched 10RequestO as an asynchronous request, it can go on to
other things. It may want to dispaich other 1/O requests to the same unit of the same

m————r i Ee




40

AMIGA PROGRAMMER"'S HANDBOOK

t-U ':

device. However, it cannot use |IORequestO to do so, because the device itself now owns
IORequestO as it sits in the device-unit request queue.

The task must therefore create a series of other 1/O requests to satisfy its other data
needs. These are crested by alocating additional 1/0 request structures and initializing
them properly according to the task's data needs. In the figure, IORequestl, 10Request2,
and 10Request3 represent both the 1/0O request structures and the operations required to
define them. The structures are created in the usual C language way—with CreateStdIO,
CreateExtlO, and structure-parameter assignment statements. However, two of their struc-

" ture parameters (io_Device and io_Unit) are copied from IORequestO, as shown by the

lines between the small rectangles. Copying ensures that the additional 1/0 request struc-
tures will be managed by the Device and Unit structures created by OpenDevice for
|ORequestO.

Since these are asynchronous 1/O requests, the task does not have to deep after
BeginlO or SendlO executes. Moreover, BeginlO and SendlO can work with ChecklO
and WaitlO to dlow the task to handle replied asynchronous 1/0O requests. For example, if
the task wanted to load four different disk-resident files into RAM from the same physical
disk unit, four different 1/O request structures could be created and dispatched to the
TrackDisk device interna routines. A task could use the TrackDisk device IOEXtTD struc-
ture to define the details of these requests. Once the TrackDisk device was opened by
OpenDevice, a task could create the I/O request structures one dfter the other, using an
io_Device and io_Unit parameter copying operation and initializing other parameters as
appropriate in each 1/0 request structure. Each fully defined 1/0 request structure could
then be dispatched with BeginlO or SendlO.

The task could then go on to other computations and activities not requiring the data
in these files. At any point in the sequence of task statements where the task needed the
file data, it could check or wait (using ChecklO or WaitlO) for the return of these
requests to one of its task reply-port queues. Once they arrived and were removed or
moved to the top of that queue, the task could get the file data and continue with its
operations.

On the other hand, if the task required the data from a disk file and could not go on
to do anything dse until it had the file data in one of its task-defined buffers, it would
use the DolO function to dispatch the 1/O request to the device unit. Once again, the
specific 1/0 request structure could be copied from another already replied or newly cre-
ated 1/0 request structure; but the task would go to seep until the device sent the file-
data reply to the task.

Note that this discusson has focused on one task and one device unit. It can eesly
be extended to multiple tasks, multiple reply ports, multiple devices, and multiple device
units. With due attention to using the proper io_Unit parameter, the procedures for cresat-
ing and copying 1/0O request structures and their parameters in a more complex multiunit
situation are virtualy the same.

vice Library Functions

Five functions are used to control most device 1/O operations: AbortlO, BeginlO,
ChecklO, DolO, and SendlO. Although these functions al end with "10," they fdl into

LA sy o

oAwMEL N GAERL L e o




;
i
i
|
H
i
3
:

e e bR i A RNl e T, Bt e o

) |
DEVICE MANAGEMENT B 41

two digtinct categories. ChecklO, DolO, and SendlO are Exec library functions, AbortlO
and BeginlO, however, are device library functions—they are defined separately in each
device library. Although they are part of the device-specific internal routines, they are
accesd directly as functions with arguments, just like ChecklO, DolO, and SendlO.

Since AbortlO and BeginlO occur in each device-pecific library and their internal
definitions are similar from device to device, this section presents a discussion of the com-
mon features and uses of the two functions. Any device-specific differences from this gen-
erd discusson will be noted in the following chapters.

The AbortlO Function

AbortlO aborts a specified device 1/O regquest after it has been sent to a specific unit of
any of the 12 Amiga devices. AbortlO is cgpable of aborting both active requests and cur-
rently queued requests. If the 1/O request is queued, it is removed from the device-unit
I/0 request queue. The I/O request structure representing the device command is then
replied to the requesting task's reply-port queue. If the 1/O request is currently active,

“execution of its device command is stopped a the earliest possble moment. The 1/O

request structure for that command is then replied to the task reply-port queue.

In both cases, the 1/0O request io_Error parameter is st to IOERR_ABORTED.
The task that originally dispatched these requests can then look at the replied 1/0 request
structure and take further action based on the io_Error parameter. In particular, the send-
ing task can modify the I/0 request structure as needed and dispatch it again.

In contrast to the CMD_FLUSH command, the AbortlO function provides a mecha
nism to abort a sngle 1/0O request that a task previoudy placed in the device-unit 1/O
request queue. : :

The BeginlO Function

BeginlO enables a task to send a command to the device internd routines of any of the
12 Amiga devices. The device interna routines then look at globa conditions in the sys
tem to determine how the device command will be processed. BeginlO recognizes other
current 1/0 demands on the device and will process 1/O requests according to specific pre-
assigned priority rules.

The operation of the BeginlO function differs from DolO and SendlO in that it
dlows a task to send a device command either synchronoudly or asynchronoudly. BeginlO
is often used in lieu of DolO for synchronous /O request commands or SendlO for asyn-
chronous 1/0 request commands. All 12 Amiga devices alow the use of BeginlO.

Generally speaking, commands dispatched with BeginlO are treated asynchronoudy
or synchronously depending on these considerations:

' The particular device to which the command was dispatched.
e The particular command dispatched to that device.

* Sysemwide hardware and software conditions at the time the task dispatches the
command.

B

ke e e Al =



4 2|~Al_ﬂ\/I|GA PROGRAMMER' HANDBOOK

i femr AL e o e

Once the system sdects synchronous or asynchronous command execution, other things
happen in a specific order that is uniform for al devices.

If the system executes the command synchronoudly, it effectively cdls the DolO com-
mand to dispatch the command jugt as if the task used DolO explicitly. Recall that DolO
puts the sending task to deep, waiting for the data to come back from the device.

The sysem aso examines the device 1/0 request structure io_Flags parameter
IOF_QUICK hit to see if it was st by the dispatching task. If IOF_QUICK was s, the
device internal routines will try to complete the 1/O request and send the results to the
task using the usual procedures for QuicklO. If QuicklO is successtul, the reply will not
be sent to the task reply-port queue; instead, the requesting task will get the device data
back immediately.

If the task did not st IOF_QUICK, the system will queue the request in the device-
unit request queue, and it will be processed when it reaches the top of the queue. It will
then be replied to the task reply-port queue. The reply will work its way to the top of
that queue; the task will then get the device data, and the loop will be complete.

The sending task can adways check to see if QuicklO was successful by looking at the
io_Flags parameter. If the IOF_QUICK hit is sill sst when the 1/0O is completed, it
means that QuicklO was successful The sending task should use ChecklO to check for
the return of the QuicklO request.

If the system decides to execute the command asynchronoudy, the command will be
dispatched just as if SendlO was cdled directly. The sending task will not be put to deep;
it can go on to do other things. In the meantime, the device interna routines first check
to see if the task set the 1/0O request-structure io_Flags IOF_QUICK bit. If it did so, the
bit is first cleared and the 1/0O request is placed in the device-unit request queue. Note
that this bit was not necessarily cleared when the system decided to execute the command
synchronoudly. .

When the 1/O regquest works its way to the top of the device-unit request queue, the
device internal routines process that request. Then they send the reply to the task reply-
port queue. Once the 1/0 request works its way to the top of that queue, the task can get
the device data and the loop will be complete.

Remember that for any device command that has a built-in QuicklO capability, the
programmer can dways st the 1/O request structure io_Flags 10F_QUICK hit. How-
ever, that command may not be executed as QuicklO—for example, if the system wes
busy with lots of device activity. The sysem software and device internal routines can
decide that the command must be executed asynchronoudly.

BeginlO is used mog often to digpatch Audio device commands. The Audio device is the
most complicated Amiga device because of multitasking, dlocation, and arbitration complexities;
with multiple tasks dl trying to use the same four audio channels, BeginlO provides a vauable
predefined internal decision-making mechanism to guide the flow of events.

The RemDevice and AddDevice Functions

This section extends the discusson of the Exec library RemDevice and AddDevice func-
tions presented in Volume |. These functions interact with the Exec library OpenDevice
and CloseDevice functions and the individual device library Expunge routines, to manage




o

A 3 e L e

A AR R b AL YA AT R TR T WL

DEVICE MANAGEMEINTiJ 3

the memory resources assigned to devices. The Expunge routine is built into the device
internal routines for al 12 Amiga devices. A C language task does not cal Expunge
directly but indirectly through the RemDevice function.

A task cals the AddDevice function to add a device to the system device list. Once
added, any task in the system can refer to that device by name. The system automatically
adds at least the Input, Console, Timer, and TrackDisk devices to the system device iist
upon startup. In addition, a task can add any of the other Amiga devices to the system
device lig with explicit cdls to AddDevice. A device then remains on the list until it is
removed explicitly by RemDevice or until it is removed indirectly by a CloseDevice func-
tion cdl following a RemDevice cadl.

A direct cdl to RemDevice attempts to both remove the device from the system
device lis and expunge the specified device from the system, thereby freeing memory
resources for other tasks and uses. In particular, RemDevice attempts to free the RAM
assigned to the Device and Unit structures and other memory assigned to the device. To
accomplish this, it cdls the specific device library Expunge routine.

The exact results achieved by a RemDevice cdl depend on the prior history of device
management when RemDevice is cdled. However, one rule is certain. RemDevice will
not be immediately successfll unless dl device units, once opened with OpenDevice calls,
have subsequently been closed with CloseDevice calls. Remember that each OpenDevice and
CloseDevice cdl opens and closes one device unit. In an OpenDevice call, the specified unit
is indicated as one of the function cal arguments. In the CloseDevice cal, the specified
unit is indicated by the specified 1/0O request structure io_Unit parameter. Therefore,
athough a device is dways open when any of its units are open, it is not fully closed until
dl of its units are closed.

If a task calls RemDevice for a specific device when any of its device units are till
open, the system will not expunge the device immediately but will instead set a device
structure parameter for a deferred expunge. The bookkeeping required for this scheme is
maintained by the system using two parameters in the Device and Unit structures
assigned to each device unit. The system automaticaly increases the Device structure
lib_OpenCnt and the Unit structure unit_OpenCnt parameters by 1 each time Open-
Device is cdled for any device unit. It automaticaly reduces the Device structure lib-
_OpenCnt parameter and the Unit structure unit_OpenCnt parameter by 1 each time
CloseDevice is cdled for any device unit.

With this arrangement, if the Device structure lib_OpenCnt and Unit structure
unit_OpenCnt parameters are not both 0 when RemDevice is caled, the RemDevice
expunge operation will be deferred until dl tasks that currently own a device unit close
those device units with CloseDevice. If a task cals RemDevice while any device unit is
still open, the system automatically sets the Device structure lib_Flags parameter to
LIBF_DELEXR thus indicating a pending deferred expunge. The deferred expunge will
actually take place when the last task currently having a device unit open closes that
device unit.

Once dl units of a device have been closed and the device has been removed from
the current sysem device ligt by a successful RemDevice cdl (perhaps due to a deferred
expunge), no new OpenDevice cals for any device unit will succeed; any task that wants
to open a device unit must first cal the Exec library AddDevice function to add that

, device to the system device list.

VR T e A




44

AMIGA PROGRAMMER"'S HANDBOOK

The interactions of the AddDevice, RemDevice, OpenDevice, and CloseDevice func-

tions gt more complicated if multiple device units are opened in shared access mode
among a set of tasks sharing units of a device. These considerations are discussed in the
OpenDevice and CloseDevice function discussions in following chapters.

USE OF EXEC-SUPPORT LIBRARY FUNCTIONS

CreateExtIO

Syntax of Function Call

iORequest = CreateExtlO (iOReplyPort, size)

ﬁ’urpose of Function

This function dlocates and initidizes an 10ExtReq structure and sets the Message sub-
structure reply-port pointer parameter, mn_ReplyPort; to the value specified by the iO-
ReplyPort argument. An |OExtReq structure is an extended device-specific structure
whose sze varies from device to device.

CreateExtlO returns a pointer to an IORequest structure for the 1/0 request a task
will use to send a command to a device. That IORequest structure is dways a substruc-
ture in an extended 1/O request structure that is used for a specific type of device.

Inputs to Function

iOReptyPort A pointer to a MsgPort structure representing the reply
port where /O request replies should be sent when the
device internal routines have finished processing them

size The size of the extended /O request structure in bytes

DiscussTon

Two functions in the Exec-support library ded with extended 1/0 request structures:
CreateExtlO and DeleteExtlO. You can use the CreateExtlO function to alocate and ini-
tiaize device-specific extended 1/0 request structures in your tasks. The Serid and Para-
lel devices are examples of devices that use extended /O request structures.

Createt

——

S




s L A T e e

DEVICE MANAGEMENT g4 5

Because the IORequest structure is the first entry in the extended 1/O request struc-
ture, a pointer to it is dso a pointer to the extended 1/0 request structure. Each device that
does not use the 10StdReq structure has its own extended 1/O request structure; its sze
depends on the data needs of that device. All of these device-pedific I/O request structures
are defined in the Amiga INCLUDE files (see Table 1.3). A task can use the C language
szeof operator to determine the number of bytes required for any extended /O request
structure. To pass a new command to a device requiring an extended 1/0O request structure,
a task should firs create a new extended 1/0 request structure for that command.

CreatePort :
- AR

Syntax of Function Call

msgPort = CreatePort (msgPortName, msgport_priority)

Eurpose of Function

This function declares and initializes a MsgPort structure with a specified name and priority.
It dlocates a signd bit number for a sgnd to be assigned to this message port. CreatePort
dso adds the message port to the system message-port list using the msgport_priority argu-
ment to fix the requested position in that list.

The msgPortName argument provides a way for other tasks to rendezvous with (obtain
a pointer to) this message port; any task can use the FindPort or FindName function to get
a pointer to the MsgPort structure for this message port by using its name as the input
argument. CreatePort returns a pointer to a MsgPort structure for the newly created mes-
sage port. This MsgPort structure is used to define and control the message port while it is
active in the system.

LI STAN TR G SR YRR T s 4T

C e

Pputs to Function

msgPortName A pointer to a null-terminated string representing the
name of the message port you want to create; the
MsgPort structure Node substructure In_Name parameter
is then set to this value

msgport_priority  The list-position priority (-128 to 127) that you want to
assign to this message port in the system message-port
list; the MsgPort structure Node substructure Jn_Pri
. parameter is set to this value




46

AMIGA PROGRAMMER"'S HANDBOOK l

. i
Dscussion

Two functions in the Exec-support library ded with message ports. CreatePort and Delete- ' o . D
Port. You use CreatePort to create, dlocate, and initidize message ports for your tasks.

These message ports can be used to queue any messages in the system, no matter where
they originate. Moreover, if you are programming devices, these ports can act as task reply
ports for the 1/0O requests sent back to your task by any device unit in the system.

} Note that the MsgPort structure required by the device-unit internal routines is defined
and managed by the Unit structure (discussed in Chapter 1). Every task in the system that

exchanges information with that device unit automatically queues its 1/0O requests in
- that unit's I/O request list. The CreatePort function is used to cregte the task reply-port 1/0

request-queue message port, not the device-unit 1/O request-queue message port. Always
keep this distinction in mind.

You can create any number of tak reply ports (limited, of course, by available RAM). - ' l Createﬁ
In addition, the use of CreatePort and DeletePort is not restricted to device management oo
tasks;, you can use them to create and delete any message ports (and reply ports) in your
programs, no matter what type of messages you are passing between any two tasks in the

system. ' | IS\

. ) i
CreateStdIO ' C ' '
SR = =5 = S A

Syntax of Function Call : - :

o i
iOStdReq = CreateStdIO (iOReplyPort) ' '

et a2 e 8 T AT

Eurpose of Function

_ This function declares and initidizes an 10StdReq structure and sets the reply-port pointer

! parameter (mn_ReplyPort) in its Message substructure to the vaue specified by the ioReply-

: Port argument. CreateStdlO dso sets the |0StdReq structure Node substructure In_Pri : §

parameter to O, indicating that the 1/0O request should be placed a the bottom of the task : '

reply-port queue when it is replied by the device internal routines. : Irp
CreateStdIO returns a pointer to an 10StdReq structure. A task can use this structure

to send any command to any device unit for which the 10StdReq structure is the required
1/0 request structure.

Wnputs to Function

iOReplyPort

port

]
|

H

l

|

. !

A pointer to a MsgPort structure that represents a task reply ' Ll S \
|

i

!

i

PR B e W




.“ g ST et vk

|
DEVICE MANAGEMENT B 4 7

Dscussion B
Two functions in the Amiga system ded with I0StdReq structures: CreateStdiO and Delete- '
StdlO. Yau can use the CreateStdlO function to dlocate and initialize |10StdReq structures
in your tasks. Each time a task needs to pass a new command to a device, that task should

create a new 10StdReq structure (or reuse a previoudy replied 1/0 request structure) for
that command.

e

CreateTask
L

| Syntax of Function Call

t ' _ taskCB = CreateTask (taskName, task_priority, taskEntryPoint,
H task_stack_size)

E"urpose of Function

This function declares and initidizes a Task structure and sets the task priority to the speci-
fied task_priority argument using the Tesk structure Node substructure In_Pri parameter.
CregieTask ds0 establishes the RAM entry point for initid tesk execution, initidizes the

4 Tesk structure stack control parameters (tc_SPReg, tc_SPUpper, and tc_SPLower), and

g adds the task to the system task list using the task__priority argument to determine the posi-
tion in that ligt.

; Once dl of this is done, CreateTask returns a pointer to the Tesk structure for the newly

1 crested task. This Task structure is used to control the task while it is active in the sysem.

Ilnputs to Function

taskName A pointer to a null-terminated string representing the name
of the task; the Task structure Node substructure In_Name
parameter is set to this value

| task_priority The task priority (a value from -128 to 127) of the newly
4 added task

taskEntryPoint A pointer to the task RAM entry point; it is used as the
. initPC parameter in the AddTask function calf inside the
CreateTask function definition




4 88 AMIGA PROGRAMMER'S HANDBOOK

e
task_stack_size The size of the RAM stack assigned to this task; it is used o Q| SC
by the CreateTask function to establish the stack control o
parameters
Discussion
Two functions in the Exec-support library are used to manage tasks—CresteTask and Delete-
Task. They control the dlocation and dedlocation of RAM and signds, and other bookkeep- _
_ ing operations required to keep track of the resources used by a task. _
: Use of the CreateTask and Delete Task functions is not restricted to device manage- : DeletePot
§ ment tasks; you can use these two functions to create and delete any tasks in the system, R
B regardless of how those tasks will be used. They do other things as well; see the appen- _
dix, which presents the actua C language definition of these functions. -f_. Syﬁ
DeleteExtIO : ' L _
5 Pur|

Syntax of Function Call

DeleteExtlO (iOExtReq, size)

EUrpose of Function

This function dedlocates the memory for an extended 1/0 request structure origindly dlo-

cated by CreateExtlO. DdeteStdlO sts the extended 1/0 request-structure Node substruc- o

ture In_Type parameter to a hexadecima FF value and decrements the |0StdReq structure |nput
io_Device and io_Unit parameters by 1. ' ]

PE-CRPRNE T

“ﬂputs to Function

e bt

: iOExtReq A pointer to a device-specific extended I/O request struc- _ ' i Dis|
! ture; usually the pointer originally returned by the Create-
ExtlO function

et b o e

Size The size of the extended I/O request structure as defined ' ' . '
in CreateExtlO - i




b

T MmN .

[ . .

DEVICE MANAGEMENT gl 49

Dtscussion

Two functions in the Exec-support library ded with extended 1/O request structures:
CreateExtlO and DeleteExtlO. DeleteExtlO dedlocates dl memory assigned to an extended
I/0 request structure. You can use DeleteExtlO to delete any extended 1/O request structure
from the system; it does not have to originate with CreateExtlO.

DeletePort

Syntax of Function Call

DeletePort (msgPort)

;’urpose of Function

This function deletes the specified MsgPort structure from the system message-port list and
dedlocates the memory originaly dlocated by the CreatePort function for that MsgPort
structure.

DeletePort also sets the MsgPort structure Node substructure In_Type parameter to a
hexadecima FF value and reduces the mp_MsgList List structure |h_Head parameter by 1,
indicating one less message port on the sysem message-port list. Finaly, DeletePort cdls the
Exec FreeSignd funaion to free the signd bit number assigned to the message port by the
CreatePort function.

H]puts to Function

msgPort A pointer to a MsgPort structure; usually the pointer origi-
nally returned by the CreatePort function

Discussion

Use the DeletePort function to dedlocate the RAM origindly dlocated by the CreatePort
function for the MsgPort structure. Note that any task can cdl the DeletePort function to
delete any message ports from the system; that message port does not have to originate with
the CreatePort function. All a task needs is a pointer to a MsgPort structure, no matter how
that MsgPort structure was created in the first place.

g N - ol

e e L



OFAMIGA PROGRAMMERTS HANDBOOK

-
DeleteStdIO : : R Purpo.
] .
Syntax of Function Call
DeleteStdIO (i0OStdReq) .
' llnputs
Purpose of Function g '

This function dedlocates the memory orlglndly dlocaed for an I0OStdReq structure by the - .

CreateStdlO function. It dso decrements the 10StdReq structure io_Device and io_Unit 3

parameters by 1 and sets the IOStdReq structure Node substructure in Type parameter to

hexadecimal FF. E : S

o Miseu!

: " . :
jnputs to Function i
.- iOStdReq A pointer to an 10StdReq structure; usually the pointer g
returned by CreateStdlO when the IOStdReq structure was :
i originally ailocated and initialized
: : - —
: : .- . _ o NewList
i ISCussion . o : .—-—-_
You can use the DeleteStdlO function to dedllocate the memory originaly alocated to an L '

10StdReq structure by the CreateStdlO function. CreateStdlO and DeleteStdlO do other - : ' nta

things as well; see the appendix. ' \j

Note that any task can use DeleteStdlO to delete any 10StdReq structure from the
system; the structure does not have to originate with the CreateStdlO function.

% B

i DeleteTask

Syntax of Function Call

DeleteTask (taskCB) ' L

Inputs

e A e mim e A+ =t




Eurpose of Function

This function dedlocates the memory originaly assigned to the Teask structure by the
; CreasteTask function. It frees the Tesk structure RAM (places it on a memory-free list) so i)
: that another task can use that memory for its needs. DdeteTask dso removes the task from o
the system tesk list using the Exec library RemTask function.

e e B

Inputs to Function

. taskCB A pointer to a Task structure used to control the task while it
is active in the system; usually the pointer originally returned
by CreateTask

Discussion
CreateTask and DeeteTask should be used as a pair; doing so provides a grest dedl of con-
venience to the programmer. Just as you dlocate and initidize the Task structure with the
CreateTask function, you use the DeleteTask function to dedlocate the Task structure from

the system.

NewlList
L R

Syntax of Function Call

NewList (list)

Furpose of Function

l This function initializes a new list in the system by calling the assembly language
NEWLIST macro.

Inputs to Function

list A pointer to a List structure that will control a new list in the
system




52 @WAMIGA PROGRAMMER"'S HANDBOOK

Discussion

i The NewList function cdls the assembly language NEWLIST macro. Once the List
. structure is crested, nodes can be added to or deleted from the list by defining appropriate
Node structures.

For an example, look at the definition of the CreatePort function in the appendix.
The NewList function is used to create a new list for messages in a message port if the
msgPortName pointer argument in the CreatePort function is 0, indicating that the new
message port is unnamed.

T

EERNCE T L Sl

R

e e e, Y e E




THE CONSOLE DEVICE

| Introduction

The Console device is used to send data to an Intuition window or to receive input from
the Amiga keyboard, gameport connectors, or disk drives. It dso opens the Input device
automatically, which in turn opens the Keyboard, Gameport, and Timer devices automati-
cdly. Input events coming to the Console device usualy originate with these other
devices. The Console device is one of the input handlers that process input events. It is
positioned at priority O in the input-handler function list described in Chapter 7.

Unlike other Amiga devices, the Console device does not work with the Unit structure;
instead, it works with the ConUnit structure, which enables a task to represent a connection
to the Console device interna routines through its MsgPort substructure and a connection to
an Intuition window and the Intuition internal routines through its cu_Window parameter.

O)eration of the Console Device

Fi'gure 8.1 shows the general operation of the Console device. A task can read characters
from the Amiga keyboard while also writing ASCII characters and screen control charac-
ters to an Intuition window. The figure shows how a task receives information from the
disk system, the Amiga keyboard, and the mouse, and where tha™ information goes.

A Console device unit is automatically associated with an Intuition window by the
OpenDevice cdl that opens it. OpenDevice initidizes a ConUnit structure to tie together
the MsgPort structure and the Intuition Window structure. The device-unit request queue
is managed by the ConUnit structure MsgPort substructure, and each Intuition window is
managed by an Intuition Window structure. The ConUnit structure is the medium of
communication between the Console device internal routines and the Intuition internal
routines.

A task that needs to use the Console device internal routines to process mouse, key-
board, or gameport input events should establish a separate task reply-port queue for
queuing replied CMD_READ commands. In order for the Console device to communi-
cate with an Intuition window, it should aso establish a separate task reply port for queu-
ing replied CMD_WRITE commands. In addition, if the task needs to dispatch any other
Console device commands, it should set up a third task reply port. The Exec-support
library CreatePort function should be used to create these ports.

Read-Write Operations for the Console Device

Figure 82 illustrates the general operation of the Console device for write operations.
Each CMD_WRITE command dispatched to the Console device interna routines sends
either a set of ASCII characters or a set of screen control characters to a Console device
unit Intuition window.

Each open Console device unit is dways tied to an Intuition window, which acts like
an enhanced ASCII terminal. It obeys many of the standard ANSI screen control-code
(escape-character) sequences, as well as additional sequences unique to the Amiga. The

o ———y




[y

(L AL N A e e

1
!
i

sty

194

AMIGA PROGRA MM E R'S HANDBOOK

Figure 8.1:
Operation of the

Console Device

TrackDisk
Device
Internal

Routines

Keyboard
Device
Internal .

Routines

Input
Device
Internal
Routines

User Moves and
Resizes Window

Inluition Display

Window control info. Window
Write characters status info.
merged Console Device Internal Routines

input

Gameport
Device
Internal

Routines

ouyse I I Keyboord I IDisk System]

Device Internal
Read Buffer

|

. ) }

Device Unit Request Queue

(all requests)

Read
Requests

Write Other
Requests Requests

Task Statements

Task-Defined Task-Defined

Read Write
Buffer Buffer

}

! }

Read

Other

Write Commands

Reply Port Reply Port Reply Port

!

4

open Console device unit can dso send an ASCII character stream to its associated Intui-
tion window, which becomes the text the user sees in the window. It is the responsihility
of each task to define the information in its task-defined write buffers before a

CMD_WRITE command is dispatched.

The relaionship between the Console device internal routines and the Intuition inter-
nal routines is shown in the lower half of Figure 8.2. The st of arrows between the Con-
Unit structure and the Intuition interna routines represents the information transfer path.

Each Console device unit Intuition window is postioned initiadly with its upper-left
corner a pixe coordinates (11,11). The Intuition software system interna routines keep
track of the continuoudy changing size and location of each window and automaticaly sup-

ply and update that information in a sat of 14 ConUnit structure parameters.

Figure 8.2
Writ
Operation.
for th>
Consol

Devic:




THE CONSOLE DHMEE Bi 95

e
Amiga Display Screen
ASCII_Choracter _—
Tosks Console Device 1)
Unit  Write iConsoIe Window I_ i
Buffer £
Screen_Control JOOXRHRIKIHRHIIKHIIIKIHKIHXIXIKNKK 2
—————————= =
Sequence XXXX
Each task a u
controls r ——
Console device L_|
unit write current cursor position
buffers current pointer position
f L]
o Current Bottom Margin
b_LengthT I\O_Dott 1
cuJCeyMapStaict cu_XCP
Console Device ConuUnit Jcu YCP Intuition
Internal . Structure cu_XMax Internal
Routines ) £u_YMax Routines
cu_Window I_-jCU”XRSize
§ . \"cu_YRSize o
specify current communication W initialize and
. i keymop, intuition medium between -:mgin continuously
F|gure 82 window, and Console device W&a“ update ConUnit
- : Console device cu_MP internal routines, e SmEE=tE R structure
Write ' ; cu,_IRExtont
o unit message and Intuition o X UINShrink parameters
:;:‘ Operations port internal routines o YHInShrink
= ey
: for the “cu,)
—fU_YCCP
. Console current stole
. . of window 15 Rastport
. Device

structure
parameters
(not shown)

This dlows a task and the Console device internal routines to monitor the current
state of the window. These parameters are in addition to the 15 RastPort structure param-
eters that the Intuition system initializes and updates. A task can read the 14 ConUnit
structure parameters but cannot write (change) them. The Console device interna routines
use these parameters to determine how to place text into the Intuition window. Window
manipulations by the user are often the cause of parameter changes.

The Console device routines receive information from the task through the message
port defined by the ConUnit structure cu_MP MsgPort substructure, which represents
the message port where a task can queue CMD_READ, CMD_WRITE, and other 1/0
requests for processing by the Console device internal routines. The ConUnit cu_Window
parameter is provided as input to the OpenDevice function call when the Console device
unit is firsg opened. The cu_KeyMapStruct parameter represents the name of the current
KeyMap structure used for key mapping during CMD_READ processing.

Figure 8.3 illustrates the genera operation of the Console device for read operations.
'Each CMD_READ command dispatched to the Console device routines reads one of the




e e

SR

196

AMGA PROGRAMMER"'S HANDBOOK

Figure 8.3:
Read
Operations

for the

Console Device

following into a task-defined read buffer from the Console device internal reed buffer:

e A continuous byte stream of ANSI 3.64 characters coming from,the Amiga key-
board indirectly through the Keyboard device and Input device internal routines.
This stream may contain ASCII characters or raw input event information.

e A continuous mouse input stream coming from the Amiga mouse indirectly
through the Gameport and Input device internal routines because of a user's mouse
actions in an Intuition window. '

e A disk insertion or remova input event coming from the TrackDisk device and Input
device interna routines indirectly when a user changes the disk in a disk drive.

The Console device can dedl with two kinds of input events: raw and preprocessed.
A music program, for example, may want to ded with keyboard input events as raw
events, with no keymapping or raw code trandation, whereas a text program may want to
deal with keyboard input events after they have been preprocessed into ASCII and escape-
character sequences.

All three categories of input events can be either raw or preprocessed, depending on
the setting of the SRE (sat raw events) and RRE (resst raw events) parameters. Each
input event was originaly represented as an InputEvent structure; the input events were
merged by the Input device routines before reaching the Console device. See Chapter 7
for further details on this operation.

The event stream coming from the keyboard can be preprocessed by a key map
before its individual characters are sent to the Console device internal read buffer. The
key map changes (maps) each character into another character or string of characters; these
are then read into the task-defined buffer for further processing. The system provides a
default key map (standard United States), or a user can define one. The Keyboard device
system provides the KeyMap structure and the CD_ASKKEYMAP and CD_SETKEY -
MAP functions to manage the key map.

ANSI 3.64-byte stondard stream

ASCIl Characters
Set Row (single or string)
) Events Keyboard Input Console Device Key L | Task-Defined
(music progrom) preprocessed by ] Internal ™) W | Escape sequence Read Buffer
Keyboard device Routines _“:i_l_&ng.lga;smng;_-—

and Input device

Reset Row

Events Mouse input

(text program) preprocessed by
Gameport device Device
ond Input device Internal
Read Buffer

Disk Activity
preprocessed by
TrackDisk device
and Input device




THE GONSOLE DEVICE QM 197

The Amiga currently supports the following built-in key maps. German, Spanish,
French, British, Italian, Icelandic, Swedish/Finnish, Danish, Norwegian, French Canadian,
and dtandard United States. It dso supports a Release 1.1-compatible standard United
States key map and a key map that changes the keyboard from a standard Qwerty to a
Dvorak keyboard. These key maps are in the Workbench disk's system directory. The user
sdects the Setmap icon and mekes an Info menu sdection to choose a specific key map.

Once the character stream is preprocessed by the key map, it is divided into two— one
character stream consisting of standard ASCII characters (either singly or in a string), and
the other a st of characters defining an escape-character sequence, which is either a single
charaaer or a gring of characters preceded by the ASCII escape character. Both of these char-
acter streams are placed into the Console device read buffer for processing by a task.
For example, the characters can be sent to an Intuition window by dispatching an appro-
priste CMD_WRITE command that uses the task-defined read buffer as a write buffer
for the characters.

Mouse input events are sent directly from the Gameport device internal routines to
the Console device routines for processing. These input events lead to a sat of actions in
the Intuition window. Disk insertion and removd input events are sent directly from the
TrackDisk device routines to the Console device routines for processing. These events can
led to a set of actions in the Intuition window (for example, a requestor that tells the
user to insert a specific disk).

Console Device Commands

The Console device has four device-specific commands and three standard device com-
mands. All commands support both QuicklO and queued I/O. No command supports
immediate-mode operation. All commands afect the IOStdReq structure io_Error parame-
ter; CMD_READ dso dfects the io_Actua parameter and the contents of the Console
device interna read buffer.

Sending Commands to the Console Device

Figure 84 depicts the general scheme used to dispatch commands to the Console device
internal routines. The lines with arrows represent the parameters you initialize and those
returned by the Console device internal routines. The individual function and command
sections in this chapter indicate the appropriate parameters for your task.

The programming process consists of three phases:

1. 10StdReq structure preparation. The programmer has complete control over this
phase; here, you initidlize parameters in the 10StdReq structure in preparation for
dispatching a command to the Console device interna routines. The parameters
include the usua ones required by most devices, as well as arguments for the
CDInputHandler and RawKeyConvert functions, the choice of parameters depends
on the specific command or function you plan to dispatch. These parameters pro-

k Vide an information path to the data needed by the Console device internal routines
to process the command or function.

g edmin -

e

v 1 b, 1




198

i
1
i
.t

T b e b B e

AMIGAPROGHAMME /'S HANDBOOK

Preporation of Cutputy of
Wfegques! Command of Funchan
Struchwe Processing
Q; Ganeral
mn _ReplPort | K K in Oece Idoesu;
Lenerpd i e Console Device Internal Routines F g Linil sln::h:qe
g m it io_kclud
S1aReq o_Commond i Ertor 5:’;“"“;;&3
1 . Hructuee o K logs BeginlO. DoiO, or SendlO
Figure 8.4: | e ioF_ouick 2t Heybiop . st
10 sends command, or tlrur byt Chonge vahag in kepdg
Console Device o lengin | functions initiate srometars sivutiore #lh waliss p:nled o
y poromelsrs
Wput orquments for —npulent | Console device internal by w_Dota ingul parometer
Command and Cownpulbionds ond shorButler routine  servicing (0 _SETRETMAF commong
Function RouiefComert fnclios e Fil to_pato buf
e thar _bullsr il io_Dato buffer
- .
h nexl chorocters [
i Used only lor Keymap «itl
Processing D ASKKEvIAD i A Cpentot Infrom the keyboard

Device structure parometef

command | __ porpmeters

2. Console device routine processing. The only part you play in this phase is to dis-
patch the command to the device using BeginlO, DolO, or SendlO. When one of
these functions begins executing, control passes to the device and system internal
routines. '

3. Command output parameter processing. The system and Console device internal rou-
tines have complete control over this phase. The results of Console device command
processing have been returned to the task that origindly dispatched the command. If
the I/O request was not successl as QuicklO, it was processed when it moved to
the top of the device-unit request queue; the Console device then replied and the
request is now in the task reply-port queue. If the request was a successful QuicklO,
it was not queued in the task reply-port queue but came directly back to the request-
ing task; the four parameters ill direct you to appropriate data for your task.

For most of the Console device commands, the system provides the io_Error output
parameter; for CMD_READ it aso provides the io_Actua output parameter. In addition,
the CD_ASKKEYMAP and CD_SETKEYMAP commands read or write key map data
into the KeyMap structure.

Note that Figure 84 aso shows the parameters that play a part in Console device
function setup and processing. The OpenDevice and CloseDevice functions both dfect the
unit 0 Device structure lib_OpenCnt parameter; OpenDevice dso dfects the io_Error
parameter. Note that the ConUnit structure does not contain an open-count parameter
equivalent to the Unit structure unit_OpenCnt parameter used with other devices.

Structures for the Console Device

Figure 85 illustrates the structures required to define operations for the Console device.
The Console device dedls directly with only one structure—ConUnit. However, the Con-
sole device dso requires three other structures to work with the Amiga keyboard: Key-
MapNode, KeyMap, and KeyMapResource.

Figu
Console




af i S

e

THE CONSOLE DEVICE g1 9 9

Figure 8.5:
Console Device
Structures

cu_AreoPtrn ConUnit Structure ycurwindow
MsgPort  Structure
(cu_MPj

:U"ront Taokfa_ . faaaboam
KeyMop _Structure Textfont structure
(cu_KeyMopStruct)

KeyMapNode Structure

Node Structure KeyMop Structure
(kn_Node) (dn_KeyMop)

km_LoKeyMop Types|
km_|_oKeyMoj
km_LoCopsable
km_Lo(?epeatable KeyMap Structure
Ju—CL
km_HiKeyMapT><pes)
——
m_H>KeyMap,
km_HiCapsoble
- km_H.Repeotoble

KeyMapResource Structure
Node Structure ” List Structure I

(kr_Node) (fer.List)

The ConUnit structure contains two substructures, a MsgPort structure named
cu_MP and a KeyMap substructure named cu_KeyMapStruct. The MsgPort structure is
discussed in Chapter 1 of Volume |; the KeyMap structure is discussed in Chapter 9 of
this volume.

ConUnit also contains three pointer parameters. The cu_AreaPtrn parameter points
to a Graphics library drawing-area pattern in RAM (see Volume |, Chapter 2); cu_Win-
dow points to an Intuition Window structure (see Volume I, Chapter 6); and cu_Font
points to a TextFont structure (see Volume |, Chapter 4). These parameters help manage
the Intuition window associated with the Console device unit.

The KeyMap structure contains no substructures, but it does contain a set of eight
pointer parameters. Each points to a different area of RAM in which information for a
specific key map is kept.

The KeyMapNode structure contains two substructures, a Node substructure named
kn_Node and a KeyMap structure named kn_KeyMap. The system uses the Node struc-
ture to place each KeyMap structure on a system list of KeyMap structures.

The KeyMapResource structure contains two substructures, a Node structure named
kr_Node and a List structure named krJList. The system uses them to maintain a list of
current keyboard resources in the system.

The ConUnit Structure

The ConUnit structure is defined as follows:

struct Con Unit {
struct MsgPort cu_MP;
struct Window *cu_Window;




{
200

AMIGA PROGRAMMER"'

S HANDBOOK

H

WORD cu X,

WORD cu_YCP,

WORD cu XMax;

WORD cu_YMax;

WORD cu_XRSize;

WORD cu_YRSize;

WORD cu_XROrigin;

WORD cu_YROirigin;

WORD cu_XRExtant;

WORD cu_YRExtant;

WORD cu_XMinShrink;

WORD cu_YMinShrink;

WORD cu_XCCP;

WORD cu_YCCP;

struct KeyMap cu_KeyMapStruct;
UWORD cu_TabStops[MAXTABS];
BYTE cu_Nask;

BYTE cu_FgPen;

BYTE cu_BgPen;

BYTE cu_AOLPen;

BYTE cu_DrawMode;

BYTE cu_AreaPtSz;

APTR cu_AreaPtrn;

UBYTE cu_MinTerms[8];

struct TextFont *cu_Font;
UBYTE cu_AlgoStyle;

UBYTE cu_TxFlags;

UBYTE cu_TxHeight;

UBYTE cu_TxWidth;

UWORD cu_TxBaseline;

UWORD cu_TxSpacing;

UBYTE cu_Modes [(PMB_AWM +7)/8];
UBYTE cu_RawEvents[(IECLASS_MAX + 7)/8J;

The cu_MP parameter is the MsgPort substructure representing the Console device-
unit request queue; cu_Window points to an Intuition Window structure representing the
window associaed with the unit. The next 14 parameters are task read-only parameters.
They are initidlized when OpenDevice returns and are kept up-to-date automaticaly by
the Intuition software system internal routines to reflect changing conditions in the Intui-
tion window:

e CU_XCP and cu_YCP ae the current X and Y positions of the last character
placed into the Intuition window.

B cu XMax and cu_YMAX are the current maximum dlowed X and Y positions of
a character in the Intuition window.

|
L
i




-..‘n-'W(.-w-l.buv'ﬁ...; A

o betecbe

P

i
k!

THE CONSOLE DEVICH MI01

P A

The
by a

cu_XRSize and cu_YRSize are the maximum number of characters that can be
placed into the window in the X and Y directions. These parameters are used for
automatic word wrap and for line formatting in the window.

cu_XROrigin and cu_YROrigin are the X- and Y-direction origins of the Intuition
window associated with the Console device unit.

cu_XRExtant and cu_YRExtant are the current maximum X- and Y-direction sizes
of the window raster associated with the Console device unit.

cu_XMinShrink and cu_YMinShrink are the current minimum X- and Y-direction
szes dlowed for the Intuition window after the user (or a task) resizes the window.

cu_XCCP and cu_YCCP are the current X and Y of the cursor in the window.
They change as the user moves the cursor.

next two parameters in the Con Unit structure can be read and written to (changed)
task: '

cu_KeyMapStruct is the name of a KeyMap substructure used by the Console

device unit for mapping keystrokes. The KeyMap structure can be changed by the
AskKeyMap and SetkKeyMap functions.

cu_TabStopgMAXTABS] is a st of longwords representing the current tab stops
in the Intuition window.

The next 15 parameters are the Con Unit structure values for the Graphics library
RastPort substructure used to control the drawing of graphics and text into the Intuition

window. Read Chapter 2 of Volume | to see how these parameters are defined and used.
Following is a brief summary:

cu_Mask is the RastPort structure write mask parameter.

cu_FgPen is the RastPort structure foreground pen parameter.
cu_BgPen is the RastPort structure background pen parameter.
cu_AOLPen is the RastPort structure area-outline pen parameter.
cu_DrawMode is the RastPort structure drawing-mode parameter.
cu_AreaPtSz is the RastPort structure area-pattern size parameter.
cu_AreaPtrn is the RastPort structure area-pattern parameter.
cu_MinTermg[8] is the RastPort structure minimum terms parameter.
cu_Font is a pointer to a TextFont structure associated with the RastPort structure.
cu_AlgoStyle is the RastPort structure agorithimic style parameter.
cu_TxFlags is the RastPort structure text flags parameter.




202

MIGA PROGRAMMER"'S HANDBOOK

» cu_TxHeight is the RastPort structure text height parameter.
e cu_TxWidth is the RastPort structure text width parameter.
e cu_TxBasdline is the RastPort structure text basdline parameter.
e cu_TxSpacing is the RastPort structure text-spacing parameter.
The lagt two parameters to the ConUnit structure are for system use only:

e cu_Modes [(PMB_AWM +7)/8)] is a s& of eight Console device unit modes. Each
bit in this byte parameter represents one mode. The parameter is used internaly by
the Console device routines.

¢ cu_RawEventd{|IECLASS MAX+7)/8] is a s&t of rav event switches. This num-
ber is tied to the maximum number of raw event classes; it is used internally by
the Console device routines.

The KeyMap Structure

The KeyMap structure is defined as follows:

struct KeyMap {

UBYTE *km_LoKeyMapTypes;
ULONG *km_LoKeyMap;
UBYTE *km_LoCapsable;
UBYTE *km_LoRepeatable;
UBYTE *km_HiKeyMapTypes;
ULONG *km_HiKeyMap;
UBYTE *km_HiCapsable;
UBYTE *km_HiRepeatable;

15
The parameters in the KeyMap structure have the following meanings:

* km_LoKeyMapTypes points to the type of trandation table to be used for key
mapping; in this case, the table that covers the raw key codes from hexadecimal 00
through 3F. .

e km_LoKeyMap points to a trandation table that defines a trandation for raw key-
code values between hexadecima 00 and 3F. Each entry in this table is four bytes
long. The trandation table can generate a single character or a string of characters for
eech raw key code. Vdues for the pace bar, the Tab, Alt, Ctrl, and arrow keys, and
severd other keys are not included here; they are included in the high-key map table.

e km_LoCapsable points to an 8byte table (64 bits) containing more information
about the raw key-code trandation process, it tells the system how to treat the Shift
and Caps Lock key status. The table represents keys whose raw key codes are
between hexadecimal 00 and 3F. The bits that control it are numbered from bit O




THE CONSOLE DEVICE [l 203

in byte 0 to bit 7 in byte 7 in linear fashior, for example, the bit representing the
capitdization status for the key transmitting raw key code 00 is in bit O in byte 0.

B km_LoRepeatable points to an 8-byte table (64 hits) that tells the system if the
specified key should repeat when pressed. The table represents keys whose raw key
codes are between hexadecima 00 and 3F. The bits that control this feature are
again numbered from bit O in byte O to bit 7 in byte 7 in linear fashion.

W km__HiKeyMapTypes points to the type of trandation table to be used for key
mapping; in this case, the table that covers raw key codes from hexadecimal 40
through 67.

B km_HiKeyMap points to a translation table that defines a trandation for raw key-
& code vaues between hexadecimal 40 and 67. Each entry in this table is four bytes
' long. The table can generate a single character or a string of characters for each
raw key code. Vdues for the space bar, the Tab, Alt, Ctrl, and arrow keys, and
severd other keys are included in this table.

s B km_HiCapsable points to an 8-byte table (64 bits) containing more information
about the raw key-code trandation process; it tells the system how to treat the Shift
B and Caps Lock key status. The table represents keys whose raw key codes are
' between hexadecimal 40 and 67. The bits that control it are numbered from bit O
w in byte 0 to bit 7 in byte 7 in linear fashion; for example, the bit representing the

capitalization status for the key transmitting raw key-code 40 is in bit 0 in byte 0.

# km_HiRepeatable points to an 8-byte table (64 hits) that tells the system if the
ecified key should repeat when pressed. The table represents keys whose raw key
codes are between hexadecima 40 and 67. The bits that control this feature are
again numbered from bit 0 in byte O to bit 7 in byte 7 in linear fashion.

The KeyMapNode Structure
The KeyMapNode structure is defined as follows:

struct KeyMapNode {
struct Node kn_Node;
struct KeyMap kn_Keymap;

b
The parameters in the KeyMapNode structure have the following meanings:

* kn_Node is the name of a Node substructure used to place a set of KeyMap struc-
tures on a list.

e kn_Keymap is the name of the KeyMap structure to be placed on the KeyMap
structure list.




204

st v

AMIGA PROGRAMMER"S HANDBOOK

The KeyMapResource Structure
The KeyMapResource structure is defined as follows:

struct KeyMapResource {
struct Node kr_Node;
struct List kr_List;

b
The parameters in the KeyMapResource structure have the following meanings:

e kr_Node is the name of a Node substructure used to place a st of KeyMapNode
structures on a list.

e kr_Ligt is the name of a List substructure used to hold the lig of KeyMap structures.

‘ CDInputHandler

Syntax of Function Call

newlnputEvent = CDInputHandler (oldinputEvent, device)
DO AO Al

P‘urpose of Function

This function handles input events for the Console devicee The ROM input task is usu-
aly responsible for producing input events, the CDInputHandler function processes some
of them. Input events not processed by CDInputHandler are passed on to one of the
Input device's input-handler functions.

CDInputHandler returns a pointer to an InputEvent structure in the newlnputEvent
variable, which points to the firs of a group of one or more input events that were not
processed by the CDInputHandler function. Each of these input events is aso linked with
the InputEvent structure ie_NextEvent parameter; the lig of input events is then sent
to the Input device handler functions for further processing.

CDInputHandler is included in Release 12 to ensure compatibility with programs
that may have used it before Release 12 was available. A Release 12 program should not
use the CDInputHandler function; instead, it should use the input-handler functions aso-
ciated with the Input device, as described in Chapter 7.

CloselL

o~




THE CONSOLE DEVICEgg2 05

uwputs to Function

oldinputEvent A pointer to an InputEvent structure representing the first

input event in a linked list

device A pointer to a Device structure

e
A

i’reparation of the |OStdReq Structure

AR

Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initidlize io_Device and io_Unit to point to the Device and ConUnit struc-
tures that manage unit -1 of the Console device. These parameters can dways be copied
from the 10StdReq structure initiadlized by an OpenDevice function call.

Discussion

CDInputHandler is the only Console device function that directly processes input events.
It works with the linked list of InputEvent structures. The InputEvent structure ie_Next-
Event parameter links the InputEvent structures together; al InputEvent structures in the
list are not necessarily in contiguous RAM, so the ie_NextEvent pointer parameter alows
the task to link them properly. The entire list of input events is passed to the CDInput-
% Handler function for processing. Input events that are not processed by the CD-
InputHandler are then sent to the Input device input-handler functions. The newlnput-

Event parameter returned by CDInputHandler points to the first InputEvent structure
in the shortened linked list.

e

e

[

CloseDevice

S’rtax of Function Call

CloseDevice (iOStdReq)
Al

X Purpose of Function

This function closes access to a specific Console device unit. If this is the last CloseDevice
function call for al Console device units in the task and the Input device has aso been closed,
the Timer, Keyboard, and Gameport devices will also be closed. When CloseDevice returns,




+ s e el AT B s s e L L

206@AMIGA PROGRAMMER"'S HANDBOOK

the task cannot use the specific Console device unit until it executes another OpenDevice func-
tion cdl for that unit. CloseDevice sts the IOStdReq structure io_Device and io_Unit param-
ees to - 1; a tak cannot use that |OStdReq structure again until these parameters are
reinitidized by OpenDevice. It dso reduces the Device structure lib_OpenCnt parameter by 1
to indicate that one less task is using the Console device unit.

Ilnputs to Function
iOStdReq A pointer to an I0StdReq structure

Discuss?on

CloseDevice terminates access to a set of device routines for a pedific Console device unit
and its associated Intuition window. When a task is done with its Console device operations
for a gpedific Intuition window, it should dose the unit associated with that window with a
cdl to CloseDevice. This frees memory that might be needed by the systlem for this or other
tasks. Then another task can open, use, and cdose the Console device for that window; the
sequence can be repeated in a C language program that uses Console device routines.

A task should aways verify that al of its Intuition window 1/O requests have been
replied by the Console device routines before it calls CloseDevice. It can do so by using
the GetMsg, Remove, ChecklO, and WaitlO functions to see what requests are currently
in the task reply-port queue.

The lagt CloseDevice function cal in a task automaticaly closes the Input, Timer,
Keyboard, and Gameport devices in that task. However, since the Timer and Keyboard
devices are shared access mode devices, they can remain open in other tasks that have
either opened them explicitly or opened them indirectly through the Input device or the
Console device.

OeenDevice

Syntax of Function Call

error = OpenDevice ("console.device", unit, iOStdReq, 0)
DO AO DO A1l D1

Purpose of Function

This function opens access to the internal routines of the Console device. OpenDevice
» adso opens the Input device, which in turn opens the Timer, Gameport, and Keyboard
devices if they have not aready been opened in the current task.




| | THE CONSOLE DEVICE §2 07

If unit -1 is specified, the OpenDevice cal smply gets a pointer to a Device struc-
ture that the CDInputHandler and RawKeyConvert functions can use to reach the Con-
sole device internal routines. If unit O is speciffed, a Console device unit will be associated
with an Intuition window. Unit O is used for @l Intuition windows that the task wants to
associate with a Console device unit.

The OpenDevice function automeaticaly initislizes a ConUnit structure to manage the
newly opened Console device unit; it contains a MsgPort substructure representing the
device request queue for that unit, as well as a pointer to a Window structure representing
the associated Intuition window. OpenDevice dso increments the Device structure lib-
E . ' _OpenCnt parameter by 1, indicating that one more task has opened the Console device.

The Console device routines assume that the Intuition library and window are
aready open before OpenDevice is caled. As part of the OpenDevice function call prepa-
ration, the |OStdReq structure io_Data parameter must be initialized to point to an Intui-

tion Window structure that will represent the window. The RastPort structure associated
with the window (see Volume I, Chapter 6) may aready be in use by other tasks when
the Console device unit becomes associated with the window.

A Console device unit can only be opened in exclusve access mode—it is associated
with only one Intuition window. However, the Console device internal routines are dways
shared among dl tasks and units.

The results of function execution are as follows:

e io_Device. This points to a Device structure that manages unit -1 or O of the

gk g

Console device once it is opened.
E e io_Unit. This points to a ConUnit structure used to define and manage a MsgPort
and Intuition Window structure for Console device unit 0. The MsgPort structure
represents the unit 0 device request queue. OpenDevice will assign each newly
opened Console device unit a unique ConUnit structure.
* io_Error. A 0 vaue indicates that the requested open succeeded. |OERR_OPEN-
FAIL indicates that the Console device could not be opened; this is usualy caused
by a lack of memory.
nnputs to Function
i 1 "console.device" A pointer to a null-terminated string representing the
. name of the Console device
unit The Console device unit number
iOStdReq A pointer to an I0StdReq structure
0 Indicates that the flags argument is ignored

T —————

v o 0



208 #AMIGA PROGRAMMER"'S HANDBOOK

E’reparation of the |0OStdReq Structure

Initialize mn_ReplyPort to point to a MsgPort structure for the task reply port. Initidize
i al other parameters to 0, or copy them from an 10StdReq structure for a previous Open-
i Device cal. Set io_Command to O; or st it to CMD_WRITE or CMD_READ if the
; task should open the Console device and dispatch a CMD_WRITE or CMD_READ 1/O
i request immediately.

If the CreateStdIO function is used to cregte the |IOStdReq structure, it will automaticaly
return a pointer to an 10StdReq structure; for the Console device, no typecagting is necessary.

Discussion
The OpenDevice function can be cdled with appropriate parameters to open the Console
device and to initidlize parameters to define a CMD_READ or CMD_WRITE command.
Once a task has opened the Console device, it can dispatch a series of these commands (with
BeginlO, DolO, or SendlO) to send information back and forth between the task, the Amiga
keyboard, and the screen display within an Intuition window. Once a task has finished al of
its Console device writing and reading, it can (but need not) dose the Console device.
Mogt of the the IOStdReq structure parameters can be initidized after the Console
device is open to represent CMD_READ, CMD_WRITE, and other Console device com-
mands. Any parameters that are not explicitly initialized will retain their previous values or
be initidized to the default values assigned by the Console device interna routines.

RawKeyConvert
——— R

Syntax of Function Call

numChars = RawKeyConvert (inputEvent, bufferPointer, bufferLength,
DO AO Al D1

keyMap)

A2

Purpose of Function

This function converts (decodes or maps) raw key codes into ANSI 3.64-byte vdues. The
converson is based on the KeyMap structure specified as part of the input definition of the
» RawKeyConvert function. RawKeyConvert is dways cdled for Console device unit - 1.




THE CONSOLE DEVICERg2 09

Recall that the OpenDevice function returns an 10StdReq structure io_Device
pointer if the unit-number argument is - 1. RawKeyConvert needs this value to obtain
a pointer to the Device structure that manages the Console device internal routines. In
this way, the Console device internal routines can obtain a function vector offst to the : i
RawKeyConvert function. The CDInputHandler function works in the same way. i

The reaults of RawKeyConvert execution are found in the io_Actual parameter, which i
contains the actua number of ANSI byte charaaers placed into the buffer. If the 10StdReq :
structure io_Length parameter is not given a high enough value, the io_Actua parameter |
will be -1, indicating a buffer oveflow condition. In this case, not dl of the ANSI byte i
characters in the buffer will necessarily be vdid; your task should increase the size of the - -
buffer and cal RawKeyConvert again. !

ilnputs to Function

inputEvent A pointer to a task-defined buffer containing a series of
InputEvent structures

bufferPointer A pointer to a task-defined buffer that will hold all ANSI !
byte values created by the conversion

bufferLength ~ The number of bytes in the buffer : ' ik

keyMap . A pointer to a KeyMap structure that will convert raw key ] h .
codes to ANSI bytes; if this value is null, the default Key- ' _ ! 1
Map structure will be used

Preparation of the IOStheq Structure

Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io__Unit to point to the Device and ConUnit struc-
tures that manage unit -1 of the Console device. These parameters can aways be copied
from the 10StdReq structure initidized by an OpenDevice function call.

DTscussion

The RawKeyConvert function uses a KeyMap structure to convert raw key codes to
ANSI 364 bytes. The KeyMap structure can be either the KeyMap structure represent-
ing the current default key map or a KeyMap structure that is specified as part of the
input definition of RawKeyConvert.

The ANSI bytes resulting from the converson are placed into a task-defined buffer
for further use by the task. You should adways try to anticipate the maximum number of
bytes for al conversions that your tasks will need to make. If the io_Length parameter
vdue is large enough, the ANSI byte buffer will never overflow and the task can find







